
Compute (Bridgend) Ltd

REPORT Utility

Release 3.60

8 Merthyr Mawr Road, Bridgend, Wales UK CF31 3NH

Tel: +44 (1656) 65 2222
Eml: support@cbl.com

CBL Web Site - www.cbl.com

This document may be downloaded from www.cbl.com/documentation.php

CBL Ref: z:\cd\sman\a360\FileKit_3.60_REPORT_Utility.pdf

mailto:support@cbl.com

Contents
Documentation Notes...1

Introduction..2
About this Book...2
Report Utility Overview..2
Notation Conventions..2
Summary of Changes...4

Release 3.60 Enhancements...4

Basic Reporting...11
Select Report Columns...11

The COLUMNS: Section..11
Examples...11

Select Report Columns - Example 1...12
Select Report Columns - Example 2...13

Change Column Display...15
Column Data..15
Column Constants and Gaps...15
Column Headings..16
Examples...16

Change Column Data Display - Example 1..17
Change Column Data Display - Example 2..17

Create New Fields...20
The COMPUTE: Section..20
Examples...20

Create New Fields - Example 1..21
Create New Fields - Example 2..22

Change Page Display...23
The HEAD: and FOOT: Sections...23
Variable Substitution..23
Text Fragment Width, Alignment & Gaps..24
Examples...24

Change Page Display - Example 1...25
Change Page Display - Example 2...26

Filter Input Records...28
The FILTER: Section...28
Examples...29

Filter Input Records - Example 1..29
Order Report Output...31

The SORT: Section..31
Examples...31

Order Report Output - Example 1...31
Order Report Output - Example 2...32
Order Report Output - Example 3...34

Insert Breaks...36
The BREAK: Section..36
BREAK Line Text...37
The STATISTICS: Section...37
Examples...38

Insert Breaks - Example 1..38
Insert Breaks - Example 2..39
Insert Breaks - Example 3..41

Summary Reports...44
Examples...44

Summary Report - Example 1..44
Summary Report - Example 2..44
Summary Report - Example 3..45

CSV Output...46
Examples...46

CSV Report - Example 1..46
CSV Report - Example 2..46

JSON Output...48
Examples...48

JSON Report - Example 1..48
JSON Report - Example 2..48
JSON Report - Example 3..49
JSON Report - Example 4..49

XML Output...51
Examples...51

XML Report - Example 1..51
XML Report - Example 2..51
XML Report - Example 3..52

BROWSE Output..54
Examples...54

BROWSE Output - Example 1..54
BROWSE Output - Example 2..54

FileKit REPORT Utility

2024/09/02 11:04:59 i

Contents
REPORT Execution...56

Record Input..56
Record Filtering...57

Record Filtering for SDE Record Input..57
Record Filtering for SMF Record Input..57
Record Filtering for DB2 Table Input...59
Search Values..60

Wildcard Symbols...61
SMF Type Values..62
Timestamp Values...62

Statistical Values...64
Statistics Types..64
Statistics Example..64
Break Lines..66
Column Statistics...67
Column Value State...67
Statistics Value Abbreviation...68

Report Panels...69
Formatted Record Report..71
DB2 Report..73
DB2 Report - Table/View...74
DB2 Table Selection..77
DB2 WHERE Clause - Select Table Rows by Column Value..78
DB2 ORDER BY Clause..81
DB2 Report - SQL Query Control File..83
DB2 Report - SQL Query Statement..85
DB2 SQL Expanded View..86
DB2 Result Table View..88
SMF Report..89

Command Line Interface...95
Command File Execution...95
Batch Execution...96

JCL DD Statements..96
REPORT Command..99

REPORT Definition..114
Syntax Rules...114

Statement Continuation...114
Statement Separation..114
Comments..115
Character String Literals..115

Page Width..116
Record Types..117

FileKit SDO Structure...117
Record Type Assignment...117
Record Type Specification...117

Fields...119
Input Record Fields..119
Input Record Field Specification..119

Unqualified..119
Fully Qualified...120

Computed Fields..120
Computed Field Specification..121
Built-in Fields...121
Built-in Field Specification..121

Print Expressions..122
Report Definition Sections...126

BLANKWHENZERO..127
BREAK...128
BROWSE-EXIT..137
COLUMNS...139
COMPUTE...146
DISPLAY-EXIT...148
FILTER...149
FOOT...153
HEAD...155
INIT-EXIT...157
INPUT..158
MAP...164
OPTIONS...178
OUTPUT..194
REPEAT...196
REQUIRED..198
RESET...202
SORT...203
STATISTICS..206
TRANSLATE..208

FileKit REPORT Utility

2024/09/02 11:04:59 ii

Contents
Appendix A. Built-in Fields...209

Built-in Field Descriptions..209

Appendix B. Built-in Functions..212
Built-in Function Descriptions..212

ADDTIME(time1,time2)..212
BYPASS()..213
COUNTCHAR(char,string[,ESC])..213
DATEINC([date][,[n][,[unit][,datefmt]]])...213
EOF()...214
MONTHBEG([date][,datefmt])..214
MONTHEND([date][,datefmt])..215
SECS2TIME(nsecs[,scale])...215
TIME2SECS(source[,[scale][,datefmt]])...216
TIMEINC([origin][,[n][,[unit][,datefmt]]])..218

Appendix C. Sample Data...220
Formula 1 Drivers..220
Formula 1 2019 Race Venues (Circuits)...220
Formula 1 2019 Race Events..220
Formula 1 2019 Results..221
ALBUM Tracks..221

Appendix D. REPORT Logic Flow..222
SDE Dataset Processing...222
SMF Records Dataset Processing..223
DB2 Result Table Processing...225

FileKit REPORT Utility

2024/09/02 11:04:59 iii

Documentation Notes

Third Edition, April 2024

Information in this document details use of the SMF record processing utilities provided by the CBL Product Suite
component, FileKit.

Copyright in the whole and every part of this document and of the CBL Product Suite system and programs, is owned by
Compute (Bridgend) Ltd (hereinafter referred to as CBL), whose registered office is located at 8 Merthyr Mawr Road,
Bridgend, Wales, UK, CF31 3NH, and who reserve the right to alter, at their convenience, the whole or any part of this
document and/or the CBL Product Suite system and programs.

CBL Product Suite for z/OS, z/VM (CMS) and z/VSE operating systems, which includes SELCOPY, SLC, FileKit and
CBLVCAT, is available for download and install from www.cbl.com/selcdl.php.

The following publications for CBL Product Suite and its component products are available in Adobe Acrobat PDF format at
CBL web page www.cbl.com/documentation.php:

CBL Product Suite Customisation Guide•
SELCOPY User Manual•
SELCOPY C++ (SLC) Language Reference•
CBLVCAT User Manual•
FileKit Reference and User Guide•
FileKit Text Editor•
FileKit Data Editor (SDE)•
FileKit Quick Reference•
FileKit REPORT Utility•
FileKit SMF Utilities•
FileKit Training Manual•

No reproduction of the whole or any part of the CBL Product Suite system and programs, or of this document, is to be made
without prior written authority from Compute (Bridgend) Ltd.

At the time of publication, this document is believed to be correct. Where the program product differs from that stated
herein, Compute (Bridgend) Ltd reserve the right to revise either the program or its documentation at their discretion. CBL
do not warrant that upward compatibility will be maintained for any use made of this program product to perform any
operation in a manner not documented within the user manual.

The following generic terms are used throughout this document to indicate all available versions and releases of IBM
mainframe operating systems:

z/OS - z/OS, OS/390, MVS/ESA, MVS/XA, MVS/SP, OS.

z/VSE - z/VSE, VSE/ESA, VSE/SP, DOS.

z/VM CMS - z/VM, VM/ESA, VM/XA, VM/SP.

All - All z/OS, z/VSE and z/VM CMS operating systems.

2024/09/02 11:04:59 FileKit REPORT Utility 1

Introduction

About this Book

This book is a user guide and reference for the REPORT Utility included with the FileKit element of CBL Product Suite for
z/OS.

It provides all the relevant information and guidance required to produce a printable report or generate CSV, XML or JSON
format output from formatted data.

Report Utility Overview

The REPORT Utility is provided as part of FileKit, the interactive tools and utilities element of the CBL Product Suite for
z/OS. It allows users to create attractive reports from information contained in data set records or DB2 tables.

The utility takes advantage of FileKit's data structuring and mapping features to expand and format records into a number of
data fields. The structure used to map the input data may be a COBOL or PL/1 copybook, an Assembler DSECT or a FileKit
structure definition object (SDO).

Special processing is reserved for SMF records which each have a complex, yet well-defined format which is published in
IBM documentation. The REPORT utility uses the SMF SDO structures provided in FileKit to map and report on SMF input
records. See also publication "FileKit SMF Utilities".

Field values obtained from each of the input records or DB2 table rows processed, may be displayed in a printable report.
Alternatively, field values may be written to Comma Separated Variable (CSV) format records or as eXtensible Markup
Language (XML) or JavaScript Object Notation (JSON) formatted output.

The appearance of headers, footers, detail lines and other elements in any printable report generated by the REPORT utility
is very flexible. Simple, easy-to-learn REPORT utility control statement syntax is used to define the report layout.

FileKit REPORT generation panel windows and the REPORT primary command provide the interfaces by which users can
execute the REPORT utility in the FileKit foreground (TSO/ISPF) or generate JCL for execution in batch.

Notation Conventions

The following list defines notations used in this publication.

Text in syntax diagrams and examples of SELCOPY syntax are presented in a monospace font.•

REPORT Utlity keyword operands and REPORT definition keywords are shown in upper case (e.g. COLUMNS,
BREAK, RPTDEF, OLIM) although may be entered in upper or lower case, or a mixture of both cases.

•

Keywords may be shown with trailing, lower case characters. The upper cased portion of the keyword identifies the
minimum abbreviation for the keyword. (e.g. Left indicates that L, LE, LEF and LEFT are all acceptable
alternatives)

•

Variables appear in lowercase italics (e.g. input-field) and represent programmer defined parameters or keyword
parameter values.

•

Syntax diagram footnote references are represented by a number in parentheses (e.g. (1)).•

A single blank may be represented by character b.•

Syntax diagrams adhere to the following standards:

Arrow Symbols

Diagrams should be read from left to right, top to bottom and follow the path of the line. Junctions in the line are
represented by a plus (+) symbol.

>>- indicates the beginning of a statement.◊
-> indicates the statement syntax continues on the next line.◊
>- indicates the statement syntax has been continued from the previous line.◊
->< indicates the end of a statement.◊

The horizontal path line, delimited by arrow symbols, denotes the main path of the syntax diagram.

2024/09/02 11:04:59 FileKit REPORT Utility 2

Required Items

Required items appear on the main path.

 >>-- REQUIRED_ITEM --------------------------------><

Optional Items

Optional items appear below the main path.

 >>-- REQUIRED_ITEM ---+----------------------+-----><
 | |
 +-- optional_item -----+

If an optional item appears above the main path, then that item has no effect on the execution of the statement and
is used only for readability.

 +-- optional_item -----+
 | |
 >>-- REQUIRED_ITEM ---+----------------------+-----><

Multiple Required or Optional Items

If one or more alternative optional items exist, they appear vertically on separate paths. If selection of one of the
items is optional, the items appear in paths below the main path.

 >>-- REQUIRED_ITEM ---+----------------------+-----><
 | |
 +-- optional_choice1 --+
 | |
 +-- optional_choice2 --+

If selection of one of the items is mandatory, one of the items appears on the main path and all other items appear
on paths below the main path.

 >>-- REQUIRED_ITEM ---+-- required_choice1 --+-----><
 | |
 +-- required_choice2 --+

Repeatable Items

An arrow occurring above a path line returning to a junction to the left of another junction indicates the item
between the junctions may be repeated.

 +----------------------+
 v |
 >>-- REQUIRED_ITEM ---+-- repeatable_item ---+-----><

If the arrow occurs above a number of multiple item paths, this indicates that more than one of the items may be
specified and each of the items are repeatable.

Default Items

If one of a number of optional items is default, the path containing that item appears above the main path.

 +-- default_choice ----+
 | |
 >>-- REQUIRED_ITEM ---+----------------------+-----><
 | |
 +-- optional_choice ---+
 | |
 +-- optional_choice ---+

Fragments

Syntax diagrams may be split into fragments so that related syntax items are removed from the diagram and
displayed in a syntax diagram fragment below.

Fragments are named and their location within the parent diagram represented by the fragment name in bold print,
enclosed in vertical bars (or symbols). The same vertical bars are used to indicate the beginning and end of the
syntax diagram fragment below the parent diagram.

 >>-- REQUIRED_ITEM --- item1 --------| fragment |--><

Introduction Notation Conventions

2024/09/02 11:04:59 FileKit REPORT Utility 3

fragment:

 |---+-- item2 --+--- KEYWORD --+-----------+-------|
 | | | |
 +-- item3 --+ +-- item4 --+
 | |
 +-- item5 --+

Summary of Changes

This section describes changes made to the publication and includes a summary of the new features added to the REPORT
Utility since its first release in FileKit 3.50.

Release 3.60 Enhancements

This section is a summary of significant new REPORT Utility features provided in FileKit Release 3.60.

Report Definition INPUT/OUTPUT Sections

Sections INPUT: and OUTPUT: introduced to define default input source and output data set destination
respectively. Entries specified in these sections may be overridden using REPORT command parameters or
values entered in REPORT utility panel input fields

For details, see:

INPUT◊
OUTPUT◊

Report Definition MAP Section

The MAP: section has been updated to support field definitions specified using FileKit CREATE STRUCTURE
command syntax. This provides a more comprehensive alternative to the SYMNAMES format currently supported.

For details, see:

MAP◊

Built-In Functions

The following built-in REXX functions have been introduced for use in the COMPUTE: section:

BYPASS()
Used to skip reporting on the record or record segment currently being processed.

◊

DATEINC()
Used to increment (or decrement) a date value by a number of days, months or years.

◊

EOF()
Used to force end of input to skip reporting on the current record or record segment, and all records that
follow.

◊

MONTHBEG()
Used to return the ISO format date for the first day in the month of the current or specified date.

◊

MONTHEND()
Used to return the ISO format date for the last day in the month of the current or specified date.

◊

TIMEINC()
Increment (or decrement) a time or timestamp (date & time) value by a number of hours, minutes or
seconds.

◊

For details, see:

Appendix B. Built-in Functions♦

Introduction Summary of Changes

2024/09/02 11:04:59 FileKit REPORT Utility 4

Report Definition OPTIONS Section

Support has been included for the following OPTIONS: section options:

DETAIL(nlines[,ALL|DISPLAY])
ALL or DISPLAY options indicate whether generated statistics values are derived from all detail lines in
control group or only those displayed. The DETAIL option is now also obeyed for CSV, JSON and XML
report output.

◊

FIELDNAME([SHORT] | [LONG])
For input fields, forces REPORT to assign field values to the unqualified (SHORT) format of the field
name variable, the qualified (LONG) format of the field name variable, or both.

◊

FIND(string [, ...])
For non-DB2 type input, specifies search strings to be used for record selection. For SMF type input,
FIND is one of the SMF record content match criteria options.

◊

HEADWIDTH(int)
Specifies the width of header and footer lines within a printed report.

◊

ILIM(int)
Specifies the input limit, maximum number of records or DB2 rows to be read from the data source.

◊

NUMTRUNC(YES|NO[,char])
Specifies whether numeric value truncation is tolerated (and so partial numeric values displayed) or if the
overflowing field value is to be substituted with repeating truncation filler character (char) filling the display
field width.

◊

OLIM(int)
Specifies the output limit, maximum number of detail report lines that may be written to the output report.

◊

PAGEDEPTH(int)
Specifies the number of lines written to each page of the printed report output.

◊

REPORT(DB2|SDE|SMF)
Specifies the type of data in the input source.

◊

SHORTSTATS(YES|NO)
Specifies whether statistics values that overflow the display area width will be shortened to a value with a
multiplier suffix and possible "greater than" (">") prefix, or will be substituted with repeating truncation filler
characters as defined by option NUMTRUNC.

◊

SMFDATEHI(timestamp | -days)
For SMF type input only, specifies the latest SMF record timestamp to be processed.

◊

SMFDATELO(timestamp | -days)
For SMF type input only, specifies the earliest SMF record timestamp to be processed.

◊

SMFJOBNAME(jobname [, ...])
For SMF type input only, specifies jobname masks for SMF record content match criteria processing.

◊

SMFLOGIC(OR|AND)
For SMF type input only, specifies the logical operation performed between SMF record content match
criteria

◊

SMFONLINE(YES|NO)
For SMF type input only, specifies whether SMF records are processed directly from an online SMF log
data set or from SMF archive data sets.

◊

SMFSID(sid [, ...])
For SMF type input only, specifies system identification masks for SMF record content match criteria
processing.

◊

SMFTYPES(rectype | rectype:rectype | {rectype-subtype | rectype#subtype} [, ...]):
For SMF type input only, specifies record type/subtype masks for SMF record content match criteria
processing.

◊

SMFUSER(username [, ...])
For SMF type input only, specifies user name masks for SMF record content match criteria processing.

◊

For details, see:

OPTIONS♦

Introduction Release 3.60 Enhancements

2024/09/02 11:04:59 FileKit REPORT Utility 5

Input Field Value RESET

The RESET: section will reset all input field values to null after processing a record or record segment of the
specified record type mapping. RESET of individual input field values can now be further controlled using the
following field definition operands in COLUMNS: and REQUIRED: sections:

NORESET
Suppresses reset of the field value that would occur as a result of a RESET: section specification.

◊

NORESETBREAK
Suppresses reset of the field value that would occur as a result of a RESET: section specification unless
the field value is to be displayed in the first line of a control group. Only applicable to COLUMNS: section.

◊

NORESETPAGE
Suppresses reset of the field value that would occur as a result of a RESET: section specification unless
the field value is to be displayed in the first line of a new page. Only applicable to COLUMNS: section.

◊

For details, see:

COLUMNS◊
REQUIRED◊

External Field Values

In previous releases, fields identified as a SORT key, BREAK key or a variable value in a print-expression would
inherit an external formatted value defined by the matching field name entry in the COLUMNS: or REQUIRED:
section.

To overcome this restriction, the external field value format may now be controlled independently on entries in the
BREAK: and SORT: sections, as well as on individual elements of a print-expression.

Any of the following optional operands may be specified on an entry in the COLUMNS: or REQUIRED: sections, on
a BREAK: or SORT: section key field definition, or on a print-expression element:

SUBSTR
Specifies the start character number and optionally the length of the field data to be used as the field
value. This occurs before any STRIP operation takes place.

◊

STRIP
Specifies that leading and trailing blanks are to be stripped from the field value. This occurs before field
alignment takes place.

◊

width:
The width of the field value text. The field value will be aligned within this field width and blank padded or
truncated accordingly. If not specified, the defined maximum width of the built-in or input field is used.
Otherwise, for compute fields a default width of 9 is used.

◊

CENTER | CENTRE | LEFT | RIGHT
The alignment of the field value within the field width text. Alignment will occur after any STRIP keyword
operation has taken place.

◊

For details, see:

Print Expressions♦
BREAK♦
COLUMNS♦
REQUIRED♦
SORT♦

Statistical Values

The following enhancements have been introduced relating to the display of statistical values:

Entries in the COLUMNS: and REQUIRED: sections now support operand NBTOTAL which will generate
total numbers of Non-Blank field values for each control group. By default, this value is reported in the
control break totals line.

◊

Break line print-expression field elements may now specify one of the statistics based operands:
AVERAGE, MAXIMUM, MINIMUM, NBTOTAL, NZAVERAGE, NZMINIMUM or TOTAL. Instead of
inserting the prevailing field value in the break line, the relevant statistics value will be inserted for the
current control group.

◊

The default statistics columns now include columns defined with compute fields if these fields are
recognised as containing numeric data. Previously, compute fields were always treated as being
non-numeric unless a datatype specification was provided on the COLUMNS:/REQUIRED: section field
reference.

◊

Introduction Release 3.60 Enhancements

2024/09/02 11:04:59 FileKit REPORT Utility 6

For details, see:

Print Expressions♦
COLUMNS♦
REQUIRED♦

Restrictions Removed

The following restrictions no longer apply:

The REPORT command syntax now supports specification of a report definition source file only with no
other operands, i.e. REPORT report_ctl. This is equivalent to specifying REPORT RUN
RPTDEF(report_ctl).

Supporting this syntax, enables foreground execution of a report from a FileKit list of report definition
source library members. Simply type REPORT in the list's command area. INPUT: and OUTPUT:
sections in the report definition are mandatory when using this method to execute REPORT.

◊

Input fields and compute fields used as a key field in the SORT: or BREAK: sections, or referenced within
a print-expression, no longer need to be explicitly defined in the COLUMNS: or REQUIRED: sections.

However, an input field must still be defined in the COLUMNS: or REQUIRED: section if it is to be
referenced as a REXX variable within the COMPUTE: section routine.

◊

Repeating Segments

Obtaining input field values from repeating, secondary segments is only possible if the secondary segment
record-type mapping is named in the REPEAT: section.

However, output of a report detail line is triggered whenever the current input segment matches a record-type
mapping named in the REPEAT: section. This may not be desirable if the next report output line requires further
field values to be obtained from a subsequent segment.

To allow for this situation, operand "INPUT" may be entered following a record-type name specification in the
REPEAT: section, to identfy the record segment as being for input only. Segments with this record-type mapping
will *not* trigger output of a report detail line.

Reporting on segmented records, and thus use of a REPEAT: section, is most common for SMF record
processing.

For details, see:

REPEAT◊

Various Fixes

The following fixes have been implemented:

No longer print only the last line of column headers when no input field entries are specified in the
COLUMNS: section and column headers for compute field columns are split over multiple lines using the
header break symbol ("|").

◊

Use an input field's value, prior to it being reset to null, when that field is referenced in a print-expression
or used as a key field in the SORT: or BREAK: section.

◊

Execution Speed

Significant improvement has been made to the performance of REPORT utility execution.

Conversion of the REPORT utility source code to High Level Assembler has meant a large reduction in REPORT
execution times and CPU usage with many simple jobs running up to 10 times faster than previously achieved.

Unless a "BROWSE-EXIT:" section exists in the REPORT definition or input is via the focus Data-Edit view of
formatted data, then REPORT will now read records (or DB2 table rows) using the FILEIO utility. The FILEIO utility
has also undergone significant enhancements and, for sequential I/O, is more efficient than using Data-Edit
BROWSE processing previously used by REPORT.

The original (REXX based) version of the REPORT utility command has been renamed as "REPORX" and may still
be used if necessary. Note, however, that this version will no longer receive maintenance or include new product
enhancements.

Introduction Release 3.60 Enhancements

2024/09/02 11:04:59 FileKit REPORT Utility 7

INIT-EXIT: Section

The INIT-EXIT: section has been introduced to allow initialisation of compute-field values when input is via FILEIO
(default).

A compute-field is one that corresponds to a REXX variable of the same name, and which may be updated in the
REXX statements of the COMPUTE: section.

The sections INIT-EXIT: and BROWSE-EXIT: are similar in that they are both executed prior to processing the first
input record. However, presence of a BROWSE-EXIT section will trigger use of REPORT's Data-Edit BROWSE
input processing.

INIT-EXIT◊

BLANKIFEQUAL

Option BLANKIFEQUAL (synonym BIEQual, BLANKWHENEQUAL, BWEQual) may be specified on individual
"COLUMNS:" section entries to force a blank column value when the column value matches that in the previous
report detail line. This option is applicable only to PRINT output.

BLANKIFEQUAL(YES), or one of its synonyms, may be specified in the OPTIONS: section to imply
BLANKIFEQUAL on all column entries.

For details, see:

COLUMNS◊
OPTIONS◊

CSV Output Options

CSVLITERALS, CSVQUOTED and CSVSTRIPALL options introduced to manage the appearance of values in
CSV output.

CSVLITERALS(YES|NO)
Determines whether or not literal values specified in the COLUMNS: section are included as values in the
CSV output.

◊

CSVQUOTED(YES|NO)
Determines whether values are always enclosed in quotation marks ("), or are enclosed in quotation
marks only when necessary. e.g. values containing commas (",").

◊

CSVSTRIPALL(YES|NO)
Determines whether or not leading and trailing blanks are stripped from the values so that the comma
separator immediately follows the last non-blank character on all but the last value in the output line. If
blanks are not stripped, then the value will be of a fixed length equal to the specified (or default) field
width.

◊

For details, see:

OPTIONS♦

JSON Output Options

JSONARRAY, JSONINDENT, JSONLITERALS, JSONQUOTED and JSONSTRIPALL options introduced to
manage the appearance of JSON output.

JSONARRAY(YES|NO)
Determines whether field values for each report line are part of a single JSON object, or one object within
an array of objects.

◊

JSONINDENT(YES|NO)
Determines whether the key/value pairs for each report field are to occur on the same report output line,
or are to be written to a new line of the report output and indented beneath the opening and closing JSON
object string braces ("{}").

◊

JSONLITERALS(YES|NO)
Determines whether or not literal values specified in the COLUMNS: section are included as the "string"
value in a key/value pair of the JSON output.

◊

JSONQUOTED(YES|NO)
Determines whether or not values are always treated as JSON strings and enclosed in quotation marks
("), or are treated as strings for non-numeric field values only.

◊

JSONSTRIPALL(YES|NO)
Determines whether or not leading and trailing blanks are stripped from the values. This is particularly
relevant to quoted JSON string values where leading trailing blanks would be treated as part of the string
value. If blanks are not stripped, then the value will be of a fixed length equal to the specified (or default)

◊

Introduction Release 3.60 Enhancements

2024/09/02 11:04:59 FileKit REPORT Utility 8

field width.

For details, see:

OPTIONS♦

XML Output Options

XMLINDENT, XMLLITERALS and XMLSTRIPALL options introduced to manage the appearance of XML output.

XMLINDENT(YES|NO)
Determines whether the XML tagged report field values are to occur on the same report output line, or are
to be each written to a new line of the report output and indented within the report line tags.

◊

XMLLITERALS(YES|NO)
Determines whether or not literal values specified in the COLUMNS: section are included as values in the
XML output.

◊

XMLSTRIPALL(YES|NO)
Determines whether or not leading and trailing blanks are stripped from the XML values. If blanks are not
stripped, then the value will be of a fixed length equal to the specified (or default) field width.

◊

For details, see:

OPTIONS♦

Other Report Definition OPTIONS

Support has also been included for the following OPTIONS: section options:

DB2NULL(YES|NO)
Determines whether or not the default Data-Edit NULL value output indicator character is displayed for a
null value in a DB2 column defined with NULL. (See the NULLCHAR Data-Edit SET/QUERY/EXTRACT
option). If DB2NULL(NO), the output value for a DB2 NULL value is blank.

◊

LINESTRIP(YES|NO)
Determines whether or not trailing blank characters are to be stripped from the lines of text written to the
REPORT output.

◊

NUMBLANK(INCLUDE|EXCLUDE)
Determines whether numeric field values, displayed as blanks in the report PRINT output as a result of a
BLANKIFEQUAL specification, are to be included in or excluded from column statistics calculations.

◊

NUMDUP(INCLUDE|EXCLUDE)
Determines whether numeric field values, displayed as duplicates of the same column values on the
previous detail line, are to be included in or excluded from column statistics calculations. Duplicate
column values may occur when column values are not reset following output of a report detail line.

◊

NUMTRUNC(...,INCLUDE|EXCLUDE)
NUMTRUNC option extended to include INCLUDE/EXCLUDE operands which determine whether
truncated numeric field values that have been overwritten in the report output with truncation filler
characters, are to be included in or excluded from column statistics calculations. Numeric field truncation
occurs when the specified field width is shorter than the width required to display the value without loosing
numeric precision.

◊

PAGEPAD(YES|NO|AUTO)
Determines whether or not blank lines are to be written to the last page of a PRINT output report to pad
the page to the specified (or defaulted) PAGEDEPTH. The AUTO operand will pad the last page with
blank lines only if it is not the first (and therefore only) page of the report. No page padding occurs if a
page footing (report definition FOOT: section) exists.

◊

REXXCOMPOUND(YES|NO)
Determines whether or not the REXX variable names, defined for input-fields identified using a qualified
field name, inherit the dot/period (".") field name qualifier separator character and so define a REXX
compound symbol variable name. REXXCOMPOUND(NO) will instead use an underscore ("_") in place of
a dot/period character in the variable name.

◊

For details, see:

OPTIONS♦

Introduction Release 3.60 Enhancements

2024/09/02 11:04:59 FileKit REPORT Utility 9

#RECNUM Built-in Field

The #RECNUM built-in-field name has a value equal to the actual record number of the input file as opposed to
the input record sequence number after record filtering has occurred.

For details, see:

Record Filtering◊
Appendix A. Built-in Fields◊

Statistical Values

An input-field that has a floating point data type, is displayed as a numeric value comprising a signed mantissa and
signed exponent values (e.g. "1.23760E-12"). Statistical values calculated on these types of field will now display
the result in the same format unless the value can be accurately represented in the available display area width as
a decimal value without an exponent.

For details, see:

Statistical Values◊

Introduction Release 3.60 Enhancements

2024/09/02 11:04:59 FileKit REPORT Utility 10

Basic Reporting
This chapter provides a step-by-step guide to generating reports using simple report definition control statements.

Select Report Columns

The very simplest report only has column field selections in the report definition input. To do this, you only specify the
following report section in the report definition member:

COLUMNS:•

The REPORT utility parameter input identifies the input data source and, unless the input source is a DB2 result table or
contains SMF log records, a mapping structure to be used to format the input record data. For DB2 table and SMF record
input, the input data is formatted dynamically using a derived mapping structure.

The formatted input data record is split into a number of fields each having a unique name. These field names may be used
to identify a report column.

The following will demonstrate how to specify column field names to generate simple reports from formatted input records.

The COLUMNS: Section

The COLUMNS: section identifies the names of mapped input record fields to be included in the report output and also the
order in which they are presented.

A formatted input data field name may be specified on a new statement in the COLUMNS: section to define the next column
to be displayed in the output report.

Note that the first column definition statement may appear on the same line as the COLUMNS: section header.
Furthermore, statement separation character (default ";") may be used to join the column statements onto a single line.

For each input record, the contents of the field and the field data type combine to assign a specific value to the field name.
When a report output detail line is written, the value currently assigned to the field name will appear as the next entry in the
defined column.

For Example, the following COLUMNS: section defines 4 columns which will contain values from mapped fields CODE,
COUNTRY, TRACK and LAP-LENGTH-KM. The order in which the columns are defined identifies the specific sequence in
which they occur in the output report.

 COLUMNS: CODE; COUNTRY; TRACK; LAP-LENGTH-KM

Because each of the column definitions include only the field name and no other parameters, default values will be used for
the column header, column width and column data alignment. These defaults are determined by the characteristics of the
corresponding input field.

Examples

The following examples demonstrate generating appealing reports using just a basic selection of columns. The reports each
contain:

A standard page header which includes a timestamp and printed report page number.•

Columns of data in a sequence corresponding to the order in which the columns are defined.•

Default, underlined column headers corresponding to the column's field name or field comment text (if included in
the copybook or FileKit SDO structure field definition). Note that a column header may span a number of report
lines.

•

Report detail lines containing formatted field values. In particular values corresponding to date, time and numeric
field definitions.

•

A Grand Totals line displaying the accumulated total for all values in numeric data type columns.•

The Grand Total line also contains the total number of items (report detail lines) created by the report.•

2024/09/02 11:04:59 FileKit REPORT Utility 11

Select Report Columns - Example 1.

This example uses the sample Formula 1 Drivers COBOL copy book (ZZSCF1DR) to format records from the input data set
which contains details of Formula 1 drivers who competed in the 2019 championship.

COBOL Copy Book - ZZS.ZZSSAM1(ZZSCF1DR):

 01 F1-Driver.
 05 NUMBER PIC 99 COMP-4.
 05 NAME PIC X(20).
 05 COUNTRY PIC X(20).
 05 BIRTH-PLACE PIC X(20).
 05 DATE-OF-BIRTH PIC 9999/99/99.
 05 FIRST-RACE PIC 9999/99/99.
 05 FIRST-RACE-CIRCUIT PIC X(3).

Report Definition Input - ZZS.ZZSSAM1(ZZSRF0D1):

The definition includes only a COLUMNS: section which simply selects the columns to report in the sequence in which they
are to appear in the printed report. Default column headers, column widths and column alignments will be used.

 COLUMNS:
 NAME
 COUNTRY
 NUMBER
 BIRTH-PLACE
 DATE-OF-BIRTH
 FIRST-RACE
 FIRST-RACE-CIRCUIT

REPORT Utility Execution:

Using the FileKit Formatted Record Report panel, we enter the names of the report definition, input data file and record
mapping library member (type COBOL). A run type "F" is selected to execute the REPORT utility in the foreground, but "B"
or "C" could be used to generate the equivalent REPORT utility batch job or primary command respectively.

Figure 1. Generate Formula 1 Drivers printed report.

Basic Reporting Select Report Columns - Example 1.

2024/09/02 11:04:59 FileKit REPORT Utility 12

Report Output:

Column headings default to be the corresponding field names. A hyphon or minus symbol ("-") in the field name forces a
break in the column header text.

12020/04/23 16:45 PAGE 1

 DATE FIRST
 BIRTH OF FIRST RACE
 NAME COUNTRY NUMBER PLACE BIRTH RACE CIRCUIT
 -------------------- -------------------- ------ -------------------- ---------- ---------- -------
 Daniel Ricciardo Australia 3 Perth 1989/07/01 2011/07/10 BRI
 Lando Norris United Kingdom 4 Bristol 1999/10/13 2019/03/17 AUS
 Sebastian Vettel Germany 5 Heppenheim 1987/07/03 2007/06/17 USA
 Kimi Raikkonen Finland 7 Espoo 1979/10/17 2001/03/04 AUS
 Romain Grosjean France 8 Geneva 1986/04/17 2009/08/23 BEL
 Pierre Gasly France 10 Rouen 1996/02/07 2017/10/01 RUS
 Sergio Perez Mexico 11 Guadalajara 1990/01/26 2011/03/27 AUS
 Charles Leclerc Monaco 16 Monte Carlo 1997/10/16 2018/03/25 AUS
 Lance Stroll Canada 18 Montreal 1998/10/29 2017/03/26 AUS
 Kevin Magnussen Denmark 20 Roskilde 1992/10/05 2014/03/16 AUS
 Alexander Albon Thailand 23 London 1996/03/23 2019/03/17 AUS
 Daniil Kvyat Russian Federation 26 Oefa 1994/04/26 2014/03/16 AUS
 Nico Hulkenberg Germany 27 Emmerich am Rhein 1987/08/19 2010/03/14 BAH
 Max Verstappen Netherlands 33 Hasselt 1997/10/30 2015/03/15 AUS
 Lewis Hamilton United Kingdom 44 Stevenage 1985/01/07 2007/03/18 AUS
 Carlos Sainz Jr. Spain 55 Madrid 1994/09/01 2015/03/15 AUS
 George Russell United Kingdom 63 Kings Lynn 1998/02/15 2019/03/17 AUS
 Valtteri Bottas Finland 77 Nastola 1989/08/28 2013/03/17 AUS
 Robert Kubica Poland 88 Krakau 1984/12/07 2006/08/06 HUN
 Antonio Giovinazzi Italy 99 Martina Franca 1993/12/14 2017/03/26 AUS
 ======
 == Grand Totals (20 Items) 637
 ======

Select Report Columns - Example 2.

This example generates a report from SMF log records. Only SMF record type 119 (TCP/IP Statistics) sub-type 2 (TCP
Connection Termination) records are processed. All other SMF record types/sub-types are bypassed.

The required SMF type/sub-types are determined by the REPORT utility based upon the record-type name qualifiers
specified before each field name in the column definition section. In this example, each of the required field names are
found in the SMF119#02_TCP_Connection_Termination record-type definition which is found in the T119ST02 (SMF
record type 119, sub-type 2) SDO structure.

The REPORT utility will use the standard FileKit SMF SDO structures to format the input SMF records. (See the "FileKit
SMF Utilities" publication for details on SMF record segment mappings and field names.)

Report Definition Input - ZZS.SZZSSAM1(ZZSRS001):

The definition includes only a COLUMNS: section which selects the columns to report in the sequence in which they are to
appear in the printed report. Each field name specification must be prefixed by the record-type structure in which the field is
defined. This is so the REPORT utility can I identify those SMF record types that it needs to process.

COLUMNS:
 SMF119#02_TCP_Connection_Termination.zRName
 SMF119#02_TCP_Connection_Termination.zConnectStart
 SMF119#02_TCP_Connection_Termination.zConnectEnd
 SMF119#02_TCP_Connection_Termination.zInBytes
 SMF119#02_TCP_Connection_Termination.zOutBytes
 SMF119#02_TCP_Connection_Termination.zTermCode

REPORT Utility Execution:

Using the FileKit SMF Report panel, we enter the names of the report definition library member and input data file (GDG
relative generation 0). An Output Limit of 20 is specified to restrict the size of the printed report. The format of the input is
"OFFLINE" to indicate that the SMF records are not being read directly from an SMF log data set. A run type "F" is selected
to execute the REPORT utility in the foreground.

Basic Reporting Select Report Columns - Example 2.

2024/09/02 11:04:59 FileKit REPORT Utility 13

Figure 2. Generate simple SMF TCP/IP Statistics - TCP Terminations printed report.

Report Output:

Default column headings are derived from field comment text defined in the FileKit SMF structure definition.

12020/04/21 17:22 PAGE 1

 TCP
 socket Connection
 resource Connection start date Connection end date & Termination
 name & time time Inbound byte count Outbound byte count reason
 :zRNAME :zCONNECTSTART :zCONNECTEND :zINBYTES :zOUTBYTES :zTERMCODE
 -------- ---------------------- ---------------------- -------------------- -------------------- --------------
 TN3270 2019/05/07 08:40:37.60 2019/05/07 08:40:39.99 31 1439 RESET_Received
 JGE 2019/05/07 09:02:35.91 2019/05/07 09:02:36.14 21565 0 App_Close
 FTPD1 2019/05/07 09:02:35.11 2019/05/07 09:02:36.37 125 485 App_Close
 RXSERVE 2019/05/07 09:02:36.56 2019/05/07 09:02:41.86 145 42 App_Close
 RXSERVE 2019/05/07 09:02:37.26 2019/05/07 09:02:41.97 0 0 App_Close
 JGE 2019/05/07 09:04:07.80 2019/05/07 09:04:07.98 21594 0 App_Close
 FTPD1 2019/05/07 09:04:07.26 2019/05/07 09:04:08.18 123 483 App_Close
 RXSERVE 2019/05/07 09:04:08.40 2019/05/07 09:04:11.16 143 40 App_Close
 RXSERVE 2019/05/07 09:04:08.53 2019/05/07 09:04:11.28 0 0 App_Close
 TN3270 2019/05/07 10:19:04.72 2019/05/07 10:32:39.26 57 1439 RESET_Received
 TN3270 2019/05/07 08:40:39.99 2019/05/07 13:28:14.42 7444 952807 No_FIN
 TN3270 2019/05/07 10:32:39.27 2019/05/07 13:54:56.90 25214 4368142 RESET_Received
 JGE 2019/05/07 15:23:29.06 2019/05/07 15:23:29.34 38614 0 App_Close
 FTPD1 2019/05/07 15:23:28.16 2019/05/07 15:23:29.54 122 483 App_Close
 RXSERVE 2019/05/07 15:23:29.77 2019/05/07 15:23:56.37 143 40 App_Close
 RXSERVE 2019/05/07 15:23:30.36 2019/05/07 15:23:56.49 0 0 App_Close
 JGE 2019/05/07 16:22:16.25 2019/05/07 16:22:16.47 0 2598 App_Close
 FTPD1 2019/05/07 16:22:15.49 2019/05/07 16:22:16.49 120 465 App_Close
 JGE 2019/05/07 16:22:17.98 2019/05/07 16:22:18.17 0 13368 App_Close
 FTPD1 2019/05/07 16:22:17.55 2019/05/07 16:22:18.18 117 474 App_Close
 ==================== ====================
 == Grand Totals (20 Items) 115557 5342305
 ==================== ====================

Basic Reporting Select Report Columns - Example 2.

2024/09/02 11:04:59 FileKit REPORT Utility 14

Change Column Display

Although specifying only field names in your column definitions will generate an attractive report using default headers and
data alignment, you may wish to tailor the appearence of the column output.

The COLUMNS: section definition statements provide the ability to control column data width and alignment as well as
header text and header text alignment. Spacing between columns may be tailored and, if desired, use of character literal
constants and REPORT utility built-in field values is also supported.

The following demonstrates how COLUMNS: section column definition statements may be enhanced to change the default
column display in a printed report output.

Column Data

Every column defined in the report output is assigned a data width and data alignment which applies to all values reported
in that column. The data width defines the maximum display width of the value and the data alignment is the positioning of
the values within the column area. (Values may be centralised or left or right adjusted.)

By default, the column data width is the number of characters required to display any value that may be represented by the
column's source field data type.

For character data type fields, this is the defined (fixed or variable maximum) field length. Fields of data type DATE, TIME or
TIMESTAMP have fixed, default column data widths that are determined by the the sub-type value. For example,
TIME(DECIMAL) has column data width 8 (e.g. 14:12:26) whereas TIME(STCK) contains an additional elapsed hour digit
plus a number of microseconds and has a column data width of 16 (e.g. 014:12:26.17629).

For fields of numeric data type, the width depends on the type of numeric data, whether the values are signed or unsigned
and whether or not the value contains a decimal point. For example, a signed numeric field of data type DECIMAL with
precision 5 and scale 2 may represent a value that occupies a maximum of 7 characters in the display (e.g. -999.99).
Therefore, the column data width would be 7 by default.

To override the default column data width, simply specify the number of characters width following the column definition field
name (or column header value, if specified). The column field value will be truncated or padded to this length. For example,
suppose field name ARTIST has a CHAR data type of length 70 and we want to display only the first 31 characters, then we
would use the following:

 COLUMNS:
 ARTIST 31 /* Artist name truncated to 31 characters. */

Note that the actual width of the printed report column text is the larger of the column data width value and the column
header width. Therefore, if the ARTIST field was assigned a header of width larger than the data width (31), then all the
column values would be padded with blanks to the width of the column header. (See Column Headers below.)

Column data alignment defaults to right adjusted for all numeric data types and data type TIME. Otherwise, for all other
data types, column values are left adjusted.

To override the default column data alignment, specify the required alignment (LEFT, RIGHT, CENTER or CENTRE)
following the column definition field name (or column header value, if specified).

In the following example, the NUMBER field has an unsigned numeric data type of INTEGER(2) and so values are right
adjusted in the column area with a data width of 5 (the widest output value being 65535). Supposing we know that the field
contains only values 0-99 (i.e. at most 2-digits), then we could restrict the data width to 2 and centralise the values within
the column area.

 COLUMNS:
 NUMBER 2 CENTRE /* 2-digit numbers centalised under header "NUMBER". */

Column Constants and Gaps

A column may be defined as having a value that remains constant for each output report detail line. This may be useful
when producing a form where report detail lines are split over several lines of the printed output or if a character other than
blank is to be used to separate the columns.

For example, the following inserts a vertical bar ("|") before and after each of the three columns (CODE, COUNTRY and
TRACK) in the report detail line.

 COLUMNS: '|'; CODE; '|'; COUNTRY; '|'; TRACK; '|'

Similarly, the amount of spacing between two columns may be controlled by specifying a gap value (a number of spaces)
between column definitions in the COLUMNS: section. The default gap value is 1, indicating that a single space will be used
to separate report columns. The gap value may be set to 0 (zero) if desired, so that the contents of two columns are
juxtuposed.

Basic Reporting Change Column Display

2024/09/02 11:04:59 FileKit REPORT Utility 15

Expanding on the last example, the gap values of "0" remove spacing between the vertical bar and the start of the column
value that follows and gap values of "2" add an additional space following the column value and the next vertical bar.

 COLUMNS: '|'; 0; CODE; 2; '|'; 0; COUNTRY; 2; '|'; 0; TRACK; 2; '|'

Note that, like column definitions based on field names, constant value column definitions and gap values must be specified
on a separate control statement. In the above examples, the statement separator symbol semi-colon (";") is used to specify
multiple report control statements on the same input record.

Column Headings

Unless COLHEAD(NO) has been specified in the OPTIONS: section of the report definition, the printed output will include
column headers before the first line of column data on each page of the report. These headers may occupy one or more
lines of the page and are underlined by a single line containing hyphon/minus symbols ("-").

The default column header text is the field name or constant literal specified in the column definition which is left adjusted in
the column display area. An exception to this occurs when report option SHORTHEADERS(NO) is set (the default setting)
and remark/comment text exists for the field definition in the FileKit SDO structure used to map the input record data. In this
case, the default column header is generated from the comment text. Note that default column header generated from
comment text is usual for SMF record reports.

To override the default header, simply specify the preferred header text as a character string literal following the column
definition field name and before any data width and alignment values. For example, the following will override the default
column header "ARTIST" with "Performing Vocalist or Group Name". The column data has a display width of 31 and will be
right adjusted:

 COLUMNS:
 ARTIST "Performing Vocalist or Group Name" 31 RIGHT

To override the default alignment of left adjusted, the header text character string literal and header alignment specification
must be placed in parentheses "()". This is to distinguish the header alignment from the data alignment that may follow.
Using the previous example, the header text is centralised and the column data values are right adjusted:

 COLUMNS:
 ARTIST ("Performing Vocalist or Group Name" CENTRE) 31 RIGHT

The header text will appear on a single line of the report and the column header width will be the length of the header text.
The width of the column display will be the larger of the column data width and the header width. In our example, the header
width is 33 and the data width is 31, so the column will have an overall width of 33.

To reduce the header width, the header text may be split into a number of header text elements using the column header
break symbol, vertical bar ("|"). Each header text element will appear on a new line of the column area within the report and
aligned using the specified or default header alignment. The header width will then become the width of the longest header
text element. Updating our example:

 COLUMNS:
 ARTIST ("Performing Vocalist|or Group Name" CENTRE) 31 RIGHT

The header text is split into 2 header text elements of length 19 and 13, so the new header width is 19 and the overall
column width becomes 31 (the column data width). See Example 2. below for sample output using this column definition.

Note that header text may be suppressed altogether by specifying a null header string literal enclosed within parentheses,
i.e. a header specification of (""). No header or header underline will be generated.

If the header break symbol is to appear as text within the header and not treated as a header break, then it must be
escaped by entering 2 adjacent vertical bar symbols (e.g. "Header || Text"). However, if the header is just a single vertical
bar, then it will automatically be treated as header text and does not need to be escaped.

Examples

The following examples demonstrate how the display of column in the standard report format may be changed. The reports
demonstrate:

Use of column data width to pad or truncate column values.•

Specification of a column data alignment to override the default alignment based on the column source field data
type.

•

Use of gap values to provide extra spacing between columns and also to remove spacing between columns.•

Constant column values that are repeated for each detail line of the report output.•

Specification of column headers and header alignment to override the defaults. This includes use of a null header
specification to suppress the underlined header.

•

Basic Reporting Column Constants and Gaps

2024/09/02 11:04:59 FileKit REPORT Utility 16

Change Column Data Display - Example 1.

This example uses the same sample Formula 1 Drivers COBOL copy book (ZZSCF1DR) described in Select Report
Columns - Example 1.

Use the same FileKit Formatted Record Report panel input as specified in Select Report Columns - Example 1 but
change the report definition member name to be ZZSRF0D2.

Report Definition Input - ZZS.ZZSSAM1(ZZSRF0D2):

The definition includes the COLUMNS: section with a reduced selection of column fields. The selected columns are each
assigned a column data width which is greater than the original COBOL copy book field width and so field values will be
padded with blank characters to occupy this width. Column data alignment values are specified to determine how the field
values are to be aligned in the column display.

COLUMNS:
 NAME "Full Name" 25
 "|" ("") /* Literal constant with null header. */
 BIRTH-PLACE ("Birth Place" RIGHT) RIGHT 22
 0; ","; 0 /* Null column spacing. */
 COUNTRY "Country"
 "|" ("")
 DATE-OF-BIRTH ("Date of Birth" CENTRE) 16 CENTRE

Report Output:

12020/05/01 12:16 PAGE 1

 Full Name Birth Place,Country Date of Birth
 ------------------------- --- ----------------
 Daniel Ricciardo | Perth,Australia | 1989/07/01
 Lando Norris | Bristol,United Kingdom | 1999/10/13
 Sebastian Vettel | Heppenheim,Germany | 1987/07/03
 Kimi Raikkonen | Espoo,Finland | 1979/10/17
 Romain Grosjean | Geneva,France | 1986/04/17
 Pierre Gasly | Rouen,France | 1996/02/07
 Sergio Perez | Guadalajara,Mexico | 1990/01/26
 Charles Leclerc | Monte Carlo,Monaco | 1997/10/16
 Lance Stroll | Montreal,Canada | 1998/10/29
 Kevin Magnussen | Roskilde,Denmark | 1992/10/05
 Alexander Albon | London,Thailand | 1996/03/23
 Daniil Kvyat | Oefa,Russian Federation | 1994/04/26
 Nico Hulkenberg | Emmerich am Rhein,Germany | 1987/08/19
 Max Verstappen | Hasselt,Netherlands | 1997/10/30
 Lewis Hamilton | Stevenage,United Kingdom | 1985/01/07
 Carlos Sainz Jr. | Madrid,Spain | 1994/09/01
 George Russell | Kings Lynn,United Kingdom | 1998/02/15
 Valtteri Bottas | Nastola,Finland | 1989/08/28
 Robert Kubica | Krakau,Poland | 1984/12/07
 Antonio Giovinazzi | Martina Franca,Italy | 1993/12/14

 == Grand Totals (20 Items)

The 0 (zero) gap value joins the BIRTH-PLACE, constant literal "," and COUNTRY columns so they appear as one column.
The input field columns' values are right and left adjusted respectively, as are the cpecifeid column headers.

The NAME and DATE-OF-BIRTH columns are asigned new column headers. Thet are also assigned data widths which
exceed the original defined field widths and so values are padded with blank characters.

The vertical bar symbol is specified as a constant literal twice, each occurrence with a null (suppressed) column header.
This results in a more tabular style report.

Change Column Data Display - Example 2.

This example uses the sample Album Tracks COBOL copy book (ZZST1CPC) to format records from the input music
collection data set.

Basic Reporting Change Column Data Display - Example 1.

2024/09/02 11:04:59 FileKit REPORT Utility 17

COBOL Copy Book - ZZS.ZZSSAM1(ZZST1CPC):

 01 TRACK .
 05 PERSISTENT-ID PIC X(016).
 05 TRACK-NUM PIC 9(003).
 05 TRACK-ID PIC 9(004).
 05 NAME PIC X(120).
 05 ARTIST PIC X(070).
 05 ALBUM PIC X(070).
 05 TOTAL-TIME PIC 9(007) BINARY.
 05 FILE-SIZE PIC 9(009) BINARY.
 05 BIT-RATE PIC 9(004) BINARY.
 05 SAMPLE-RATE PIC 9(005) PACKED-DECIMAL.
 05 YEAR PIC 9(004).
 05 NORMALIZATION PIC S9(005) PACKED-DECIMAL.
 05 DISC-NUMBER PIC 9(003).
 05 ALBUM-ARTIST PIC X(041).
 05 RELEASE-DATE PIC X(020).
 05 DATE-ADDED PIC X(020).
 05 DATE-MODIFIED PIC X(020).

Report Definition Input - ZZS.ZZSSAM1(ZZSRF001):

The definition includes only a COLUMNS: section. Column data widths and alignments are specified to truncate the input
field values and to adjust the values in the column display areas.

COLUMNS:
 RELEASE-DATE "Release|Date" 10
 3
 ARTIST ("Performing Vocalist|or Group Name" CENTRE) 31 RIGHT
 TRACK-NUM "Track#" 2 LEFT
 NAME ("Album|Track Name" CENTRE) 34
 3
 TOTAL-TIME ("Track|Duration|(1/1000 sec)" RIGHT) 6

REPORT Utility Execution:

Using the FileKit Formatted Record Report panel, we enter the names of the report definition, input data file and record
mapping library member (type COBOL).

The number of output report detail lines is restricted to 20 and a FIND string of C'I ' is used to give us just a sample
selection of album tracks. The FIND search string will disregard any input record that does not contain an upper case "I"
followed by a blank anywhere within the input record data.

Figure 4. Generate Album Track printed report.

Basic Reporting Change Column Data Display - Example 2.

2024/09/02 11:04:59 FileKit REPORT Utility 18

Report Output:

An additional 2 spaces are inserted between the RELEASE-DATE and ARTIST columns and also between the NAME and
TOTAL-TIME columns.

Column data widths are provided which are smaller than the field definition width values and so that non-significant blanks
in the field values get truncated. Data alignments are specified for ARTIST (RIGHT) and TRACK-NUM (LEFT) to override
the fields' data type defaults of LEFT and RIGHT respectively.

New column headers with header break symbols are assigned to all but one of the columns. These column headers appear
on more than one line of the column header area.

12020/05/01 12:54 PAGE 1

 Track
 Release Performing Vocalist Album Duration
 Date or Group Name Track# Track Name (1/1000 sec)
 ---------- ------------------------------- ------ ---------------------------------- ------------
 2011-01-21 Adele 12 I Found a Boy (Bonus Track) 217338
 2012-04-06 Alabama Shakes 2 I Found You 179653
 2012-04-06 Alabama Shakes 10 I Ain't the Same 175800
 1995-06-13 Alanis Morissette 1 All I Really Want 284640
 Alex Harvey 5 The Poet and I 260360
 Alex Harvey 9 The Poet and I (Reprise) (Reprise) 88613
 AC/DC 6 Can I Sit Next To You Girl 252000
 2000-10-31 Bob Dylan 11 I Want You 183680
 2000-10-31 Bob Dylan 18 I Shall Be Released 181826
 1993-04-07 Bruce Springsteen 8 I Wish I Were Blind 312973
 1993-04-07 Bruce Springsteen 11 If I Should Fall Behind 284533
 2006-09-29 Bruce Springsteen 15 How Can I Keep from Singing 138933
 2007-05-31 Springsteen & The Sessions Band 8 If I Should Fall Behind 313266
 1998-09-29 Burt Bacharach & Elvis Costello 3 I Still Have That Other Girl 166133
 1993-01-01 Crash Test Dummies 6 Here I Stand Before Me 186640
 1993-01-01 Crash Test Dummies 7 I Think I'll Disappear Now 292133
 1993-01-01 Crash Test Dummies 9 When I Go Out With Artists 221306
 1989-08-09 Del Amitri 6 When I Want You 275066
 1998-07-28 Embrace 8 I Want The World 344605
 2010-01-18 Gretchen Wilson 4 When I Think About Cheatin' 248868
 ====== ============
 == Grand Totals (20 Items) 159 4608366
 ====== ============

Basic Reporting Change Column Data Display - Example 2.

2024/09/02 11:04:59 FileKit REPORT Utility 19

Create New Fields

Sometimes it may be necessary to report (and/or SORT) on field values that don't exist in the input data but may be derived
from the input field values.

For example, the input data may contain a start and end time value but you want to report the elapsed time, or the data may
have fields containing an employee's first name and last name and you want to report a single value comprising the first
name initial and last name.

To do this, you will need to create your own field names for subsequent reference in the COLUMNS: section (or any section
where the new field value is required). These types of fields are called computed fields. The names of these fields and the
logic used to update the field's value are established in the following report section within the report definition member:

COMPUTE:•

The following will demonstrate how to use the COMPUTE: section to create and maintain computed fields and display the
field values in the generated report.

The COMPUTE: Section

The COMPUTE: section contains a fragment of REXX logic which is terminated by the next section header or end of report
definition input. The REXX includes one or more expressions and/or conditional logic that assigns a value to one or more
REXX variables.

A computed field name is simply the name of a variable specified in the REXX logic and the value assigned to the variable
at the end of the REXX logic execution will be the value of the computed field. Since the COMPUTE section executes REXX
code, any command of function supported by TSO/E REXX may be used. (See IBM publication "z/OS TSO/E REXX
Reference" for details.)

For Example, the following COMPUTE: section defines a computed field SHORTNAME whose value is derived from two
input field names FIRSTNAME and LASTNAME.

 COMPUTE:
 SHORTNAME = left(FIRSTNAME,1) || "." || LASTNAME /* e.g. "JOHN" and "DOE" becomes "J.DOE" */

The COMPUTE: section REXX routine may establish the name and values of any number of computed field names and is
executed every time a report detail line is about to be written to the report output. Therefore, the values of computed fields
will alway reflect the latest values of the input fields on which they are based.

When referenced in other sections of the report definition, a computed field name is always prefixed by a colon symbol (":")
to distinguish it from other types of report field.

Notes:

 If the input field on which a computed field is based is not included in the report detail line output (i.e. identified in
the COLUMNS: section as a column definition field), then the input field must be defined in the REQUIRED:
section.

•

 If an input field name includes a hyphon/minus symbol ("-") (valid for COBOL data description names), then, in
order to conform with REXX standards, the REPORT utility re-assigns the field values to fields of the same name
but with the "-" symbols translated to underscore symbols ("_"). Therefore, reference to any of these fields in the
the COMPUTE: section must use the underscore version of the field name. For example, input field name
"LAP-TIME" must be referred to as "LAP_TIME".

•

 Computed field names have a default display width of 9 characters. Therefore, it is likely necessary to have to
specify a column data display width if the computed field is referenced as a column definition field in the
COLUMNS: section.

•

Examples

The following examples demonstrate creation of new (computed) fields whose values are based on other input data fields.
The report output is in the same default format as shown for Select Report Columns examples, but includes columns for the
computed field values.

Basic Reporting Create New Fields

2024/09/02 11:04:59 FileKit REPORT Utility 20

Create New Fields - Example 1.

This example uses the same sample Formula 1 Drivers COBOL copy book (F1DRIVER) described in Select Report
Columns - Example 1.

Use the same FileKit Formatted Record Report panel input as specified in Select Report Columns - Example 1 but
change the report definition member name to be ZZSRF0D5.

Report Definition Input - ZZS.ZZSSAM1(ZZSRF0D5):

The definition includes a REQUIRED: section to obtain values for input data fields that are not included as columns in the
output report but are required for computed field values defined in the COMPUTE: section.

The COMPUTE: section establishes the values for computed fields "AGE" and "HOME" which are used to define output
report columns in the COLUMNS: section. These computed field column definitions each have a data width specification to
override the default of width 9 characters for computed field values. Computed field "AGE" is the driver's age on his first
Formula 1 race, computed field "HOME" is the driver's home town and country combined into a single value.

 COMPUTE:
 /* ### AGE - Computed Field - Age of driver at first race. ### */
 parse var DATE_OF_BIRTH DYEAR '/' DMM '/' DDD
 parse var FIRST_RACE FYEAR '/' FMM '/' FDD

 AGE = FYEAR-DYEAR /* Age if birthday on or before race. */

 /* Adjust AGE if first race day-of-year is after driver's birth day-of-year. */
 if DMM > FMM | (DMM = FMM & DDD > FDD)
 then AGE = AGE-1

 /* ### HOME - Computed Field - Merge BIRTH-PLACE and COUNTRY. ### */
 HOME = strip(BIRTH_PLACE) || ',' COUNTRY

 REQUIRED: /* Input fields not in report but used by COMPUTE: */
 COUNTRY
 BIRTH-PLACE

 COLUMNS:
 NAME "Full Name"
 :HOME "Place of Birth" 30 /* Override default data width of 9. */
 NUMBER "Number"
 DATE-OF-BIRTH "DOB"
 FIRST-RACE "First|Race|Date"
 :AGE "First|Race|Age" 2 /* Use data width 2. */
 FIRST-RACE-CIRCUIT "First|Race|Circuit"

Report Output:

12020/05/01 14:59 PAGE 1

 First First First
 Race Race Race
 Full Name Place of Birth Number DOB Date Age Circuit
 -------------------- ------------------------------ ------ ---------- ---------- ----- -------
 Daniel Ricciardo Perth, Australia 3 1989/07/01 2011/07/10 22 BRI
 Lando Norris Bristol, United Kingdom 4 1999/10/13 2019/03/17 19 AUS
 Sebastian Vettel Heppenheim, Germany 5 1987/07/03 2007/06/17 19 USA
 Kimi Raikkonen Espoo, Finland 7 1979/10/17 2001/03/04 21 AUS
 Romain Grosjean Geneva, France 8 1986/04/17 2009/08/23 23 BEL
 Pierre Gasly Rouen, France 10 1996/02/07 2017/10/01 21 RUS
 Sergio Perez Guadalajara, Mexico 11 1990/01/26 2011/03/27 21 AUS
 Charles Leclerc Monte Carlo, Monaco 16 1997/10/16 2018/03/25 20 AUS
 Lance Stroll Montreal, Canada 18 1998/10/29 2017/03/26 18 AUS
 Kevin Magnussen Roskilde, Denmark 20 1992/10/05 2014/03/16 21 AUS
 Alexander Albon London, Thailand 23 1996/03/23 2019/03/17 22 AUS
 Daniil Kvyat Oefa, Russian Federation 26 1994/04/26 2014/03/16 19 AUS
 Nico Hulkenberg Emmerich am Rhein, Germany 27 1987/08/19 2010/03/14 22 BAH
 Max Verstappen Hasselt, Netherlands 33 1997/10/30 2015/03/15 17 AUS
 Lewis Hamilton Stevenage, United Kingdom 44 1985/01/07 2007/03/18 22 AUS
 Carlos Sainz Jr. Madrid, Spain 55 1994/09/01 2015/03/15 20 AUS
 George Russell Kings Lynn, United Kingdom 63 1998/02/15 2019/03/17 21 AUS
 Valtteri Bottas Nastola, Finland 77 1989/08/28 2013/03/17 23 AUS
 Robert Kubica Krakau, Poland 88 1984/12/07 2006/08/06 21 HUN
 Antonio Giovinazzi Martina Franca, Italy 99 1993/12/14 2017/03/26 23 AUS
 ======
 == Grand Totals (20 Items) 637
 ======

Basic Reporting Create New Fields - Example 1.

2024/09/02 11:04:59 FileKit REPORT Utility 21

Create New Fields - Example 2.

This example is a variation of the report produced for SMF 119 TCP/IP Statistics, Connection Termination log records
described in Select Report Columns - Example 2.

Use the same FileKit SMF Report panel input as specified in Select Report Columns - Example 2 but change the report
definition member name to be SMF119A2.

Report Definition Input - ZZS.ZZSSAM1(ZZSRS002):

The COMPUTE: section establishes the value for computed field "DURATION" which is used to define output report
columns in the COLUMNS: section.

The computation uses REPORT utility built-in REXX functions Time2Secs and Secs2Time to convert between timestamp
values and an integer number of seconds. Converting the end and start timestamps to seconds allows us to subtract one
from the other to get a number of seconds elapsed. Conversion back to a timestamp format gives us the elapsed hours,
minutes and seconds.

COMPUTE:
 /* ### DURATION - Computed Field - Time elapsed between connection start & end. */
 DURATION = Secs2Time(Time2Secs(zConnectEnd) - Time2Secs(zConnectStart))

COLUMNS:
 SMF119#02_TCP_Connection_Termination.zRName 'Resource'
 SMF119#02_TCP_Connection_Termination.zConnectStart 'Connection Start'
 SMF119#02_TCP_Connection_Termination.zConnectEnd 'Connection End'

 :DURATION ('Connection|Duration|HHH:MM:SS.SS' RIGHT) 12 RIGHT

 SMF119#02_TCP_Connection_Termination.zInBytes 8 'Inbound|Bytes'
 SMF119#02_TCP_Connection_Termination.zOutBytes 8 'Outbound|Bytes'
 SMF119#02_TCP_Connection_Termination.zTermCode 'Termination|Description'

Report Output:

12020/05/01 15:39 PAGE 1

 Duration Inbound Outbound Termination
 Resource Connection Start Connection End HHH:MM:SS.SS Bytes Bytes Description
 -------- ---------------------- ---------------------- ------------ -------- -------- --------------
 TN3270 2019/05/07 08:40:37.60 2019/05/07 08:40:39.99 00:00:02.39 31 1439 RESET_Received
 JGE 2019/05/07 09:02:35.91 2019/05/07 09:02:36.14 00:00:00.23 21565 0 App_Close
 FTPD1 2019/05/07 09:02:35.11 2019/05/07 09:02:36.37 00:00:01.26 125 485 App_Close
 RXSERVE 2019/05/07 09:02:36.56 2019/05/07 09:02:41.86 00:00:05.30 145 42 App_Close
 RXSERVE 2019/05/07 09:02:37.26 2019/05/07 09:02:41.97 00:00:04.71 0 0 App_Close
 JGE 2019/05/07 09:04:07.80 2019/05/07 09:04:07.98 00:00:00.18 21594 0 App_Close
 FTPD1 2019/05/07 09:04:07.26 2019/05/07 09:04:08.18 00:00:00.92 123 483 App_Close
 RXSERVE 2019/05/07 09:04:08.40 2019/05/07 09:04:11.16 00:00:02.76 143 40 App_Close
 RXSERVE 2019/05/07 09:04:08.53 2019/05/07 09:04:11.28 00:00:02.75 0 0 App_Close
 TN3270 2019/05/07 10:19:04.72 2019/05/07 10:32:39.26 00:13:34.54 57 1439 RESET_Received
 TN3270 2019/05/07 08:40:39.99 2019/05/07 13:28:14.42 04:47:34.43 7444 952807 No_FIN
 TN3270 2019/05/07 10:32:39.27 2019/05/07 13:54:56.90 03:22:17.63 25214 4368142 RESET_Received
 JGE 2019/05/07 15:23:29.06 2019/05/07 15:23:29.34 00:00:00.28 38614 0 App_Close
 FTPD1 2019/05/07 15:23:28.16 2019/05/07 15:23:29.54 00:00:01.38 122 483 App_Close
 RXSERVE 2019/05/07 15:23:29.77 2019/05/07 15:23:56.37 00:00:26.60 143 40 App_Close
 RXSERVE 2019/05/07 15:23:30.36 2019/05/07 15:23:56.49 00:00:26.13 0 0 App_Close
 JGE 2019/05/07 16:22:16.25 2019/05/07 16:22:16.47 00:00:00.22 0 2598 App_Close
 FTPD1 2019/05/07 16:22:15.49 2019/05/07 16:22:16.49 00:00:01.00 120 465 App_Close
 JGE 2019/05/07 16:22:17.98 2019/05/07 16:22:18.17 00:00:00.19 0 13368 App_Close
 FTPD1 2019/05/07 16:22:17.55 2019/05/07 16:22:18.18 00:00:00.63 117 474 App_Close
 ======== ========
 == Grand Totals (20 Items) 115557 5342305
 ======== ========

Basic Reporting Create New Fields - Example 2.

2024/09/02 11:04:59 FileKit REPORT Utility 22

Change Page Display

Page header and footer lines may be defined to provide a template for each page of the printed report output.

The standard printed page report template has only a single header line and no footer lines. The header line contains only
the current timestamp (the date and time at which the report is generated) aligned at the left margin and the current report
page number aligned at the right margin.

To create your own page template, you add entries to one or both of the following report sections within the report definition
member:

HEAD:•
FOOT:•

The following will demonstrate how to specify entries in these sections to tailor the printed report page header and footer
lines.

The HEAD: and FOOT: Sections

Each control statement belonging to a HEAD: or FOOT: section defines a single page header or footer line. Each of these
lines may comprise 1, 2 or 3 partitions where each partition specification is separated from the next by a slash symbol ("/").
The number of partitions determine how each partition is aligned within the page width as follows:

partition 1

partition 1 partition 2

partition 1 partition 2 partition 3

A single partition will be centralised within the established page width. If 2 partitions are defined, the first will be left
andjusted and the second right adjusted within the page width. If 3 partitions are defined, the first will be left andjusted, the
second centralised and the third right adjusted. For example, the following page header definition contains 2 partitions:

 HEAD:
 'Left Adjusted Text' / 'Right Adjusted Text'

Note that, if necessary, the REPORT utility may dynamically increase the page width in order to fit all specified
header/footer line partitions with at least 2 intervening blanks onto the same line of the report output. For example, the
following header defintion contains 3 partitions:

 HEAD:
 'Left Adjusted Text (Length 30)' / 'Centralised Text (Length 28)' / 'Right (Length 17)'

If the page width required to print the column detail lines is 80, then the page width will increase from 80 to 92 in order to
display the centralised text plus 2 intervening blanks without overwriting the left adjusted text. The header output is as
follows. Note the ASA character in column 1 denoting the start of a new page. A counting guide is included here to detail the
report page width but is not part of the printed output.

,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8....,....9..
1Left Adjusted Text (Length 30) Centralised Text (Length 28) Right (Length 17)

Each partition is a string of text represented by a print expression. A print expression is comprised of one or more text
fragment definitions and optional gap values. Each text fragment may be a character string literal or a value obtained from a
named field as described next under Variable Substitution.

Variable Substitution

In addition to constant literals, a field name may be specified within the partition print expression to represent a fragment of
text which has a variable value.

The field name may be the name of a field in a mapped input record, a computed variable name or the name of a REPORT
utility built-in field. If a field name is used in a header or footer line print expression, then the value assigned to the field will
substitute the field name as the text fragment.

Header lines are written to the report output after establishing values for the next column detail line to be written. Therefore,
fields in header lines always reflect values obtained from the first detail line of the new page and not in the last detail line of
the previous page.

Basic Reporting Change Page Display

2024/09/02 11:04:59 FileKit REPORT Utility 23

For example, the following header line definition will substitute the input field value ALBUM with the album name obtained
from the input record representing the first report detail line on the new page. Similarly, the built-in field #PAGE will be
substituted with the page number of the new page.

 HEAD:
 'Track List for Album:' ALBUM / 'PAGE:' #PAGE

In contrast, footer lines always reflect values obtained from the last detail of the current page and not in the first detail line of
the next page. For example, the following will output a footer line with the album name obtained from the input record from
which the last detail line was constructed.

 FOOT:
 'End of Album:' ALBUM

Text Fragment Width, Alignment & Gaps

By default, text fragments occupy an area in the header or footer line equivalent to the maximum display width of the text it
represents.

For example, a text fragment represented by an input field value of display length 60 will occupy 60 characters in the header
text. Similarly, the field value will be positioned within the text fragment display using the default alignment for the field data
type (i.e. right adjusted for numeric and time values, left adjusted for all other data types).

These defaults may be overridden by placing the required width and/or alignment in parentheses following the fragment
specification. A width specification means that the field value will be truncated or padded with blanks on the left or right
based on the value alignment. Whether or not a width is specified, blank padding may be suppressed by including the
keyword "STRIP" in the parentheses.

In the following example, input fields ALBUM and ARTIST are used which both map values of character length 70. Both the
ALBUM and ARTIST field values are truncated on the right to length 30 but the ARTIST value then has leading and trailing
blanks stripped. Because of this, the length of the ARTIST value may vary for different artist names, as will the position of
the text fragment ("###") that follows the artist name within the same partition. Also, since we know there will be no more
than 999 report pages, the #PAGE numeric, right adjusted value is truncated on the left to be displayed as a 3 digit number.

 HEAD:
 'Album:' ALBUM (LEFT,30) 'Artist: ###' ARTIST (STRIP,30) '###' / 'PAGE:' #PAGE (RIGHT,3)

The header output is as follows. A counting guide is included but is not part of the printed output.

,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8....,....9....,
1Album: High Voltage Artist: ### AC/DC ### PAGE: 1

By default, a single space is inserted between each text fragment in a header or footer line partition. To override this, simply
insert the required gap value (number of spaces) between the two fragment specifications in the print expression. A gap
value may be 0 (zero) if two fragments are to be joined. In our example, we could insert a gap value of 4 before the ALBUM
field name and a gap value of 0 either side of the ARTIST field name.

 HEAD:
 'Album:' 4 ALBUM (LEFT,30) 'Artist: ###' 0 ARTIST (STRIP,30) 0 '###' / 'PAGE:' #PAGE (RIGHT,3)

This would produce the following header output:

,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8....,....9....,.
1Album: High Voltage Artist: ###AC/DC### PAGE: 1

Examples

The following examples show how the page header in the standard report format may be changed and how a footer may be
added. The reports demonstrate:

Use of the HEAD: and FOOT: report sections.•

Creating multiple page header and footer lines.•

Left adjusted, centralised and right adjusted page header and footer line partitions.•

Substitution of variable, input record field values for both header and footer lines.•

Use of gap values to provide extra spacing and also to remove spacing between partition text fragments.•

Basic Reporting Variable Substitution

2024/09/02 11:04:59 FileKit REPORT Utility 24

Change Page Display - Example 1.

This example uses the same sample Formula 1 Drivers COBOL copy book (ZZSCF1DR) described in Select Report
Columns - Example 1.

Use the same FileKit Formatted Record Report panel input as specified in Select Report Columns - Example 1 but
change the report definition member name to be ZZSRF0D3, the Output Limit to be 10 and the Page Depth value to be 18.

Report Definition Input - ZZS.ZZSSAM1(ZZSRF0D3):

The definition includes an OPTIONS: section and sets TOTALS(NO) to suppress automatic accumulation of a grand total for
values in numeric columns. It includes a HEAD: section that defines 2 page header lines where the first line has 2 partitions
and the second line only 1. It also includes a FOOT: section to define a single page footer line comprising 2 partitions.

Built-in fields #TODAY, #DAYNAME and #PAGE are used in the header and footer line partition print expressions to
represent the current values for date, day-of-week and page number respectively.

A gap value of "0" (zero) is used in the first header line partition print expression between built-in field #DAYNAME and the
character string literal comma (","). This ensures that the comma will appear immediately following the day-of-week with no
intervening blank character.

OPTIONS: TOTALS(NO)

HEAD:
 #DAYNAME 0 "," #TODAY / "Formula 1 Statistics"
 "2019 Season Drivers"

FOOT:
 "FIA Database" / "Page" #PAGE (RIGHT,3)

COLUMNS:
 1 /* Insert 1 space before columns. */
 NAME "Driver Name"
 BIRTH-PLACE "Place of Birth"
 COUNTRY "Country"
 NUMBER "Driver#"
 DATE-OF-BIRTH "DOB"
 FIRST-RACE "First Race"
 FIRST-RACE-CIRCUIT "Circuit"

Report Output:

12020/05/05, Tuesday Formula 1 Statistics
 2019 Season Drivers

 Driver Name Place of Birth Country Driver# DOB First Race Circuit
 -------------------- -------------------- -------------------- ------- ---------- ---------- -------
 Daniel Ricciardo Perth Australia 3 1989/07/01 2011/07/10 BRI
 Lando Norris Bristol United Kingdom 4 1999/10/13 2019/03/17 AUS
 Sebastian Vettel Heppenheim Germany 5 1987/07/03 2007/06/17 USA
 Kimi Raikkonen Espoo Finland 7 1979/10/17 2001/03/04 AUS
 Romain Grosjean Geneva France 8 1986/04/17 2009/08/23 BEL
 Pierre Gasly Rouen France 10 1996/02/07 2017/10/01 RUS
 Sergio Perez Guadalajara Mexico 11 1990/01/26 2011/03/27 AUS
 Charles Leclerc Monte Carlo Monaco 16 1997/10/16 2018/03/25 AUS
 Lance Stroll Montreal Canada 18 1998/10/29 2017/03/26 AUS
 Kevin Magnussen Roskilde Denmark 20 1992/10/05 2014/03/16 AUS

 FIA Database Page 1

Basic Reporting Change Page Display - Example 1.

2024/09/02 11:04:59 FileKit REPORT Utility 25

Change Page Display - Example 2.

This example generates a report from SMF log records. Only SMF record type 30 (Common Address Space Work) records
are processed to report job step totals. All other SMF record types are bypassed.

The required SMF type/sub-types are determined by the REPORT utility based upon the record-type name qualifiers
specified before each field name in the column definition section. In this example, the required field names are found in the
SMF030_Identification, SMF030_Completion, SMF030_Processor_Accounting and SMF030_IO_Activity record-type
definitions which are found in the T030 (SMF record type 30) SDO structure.

The REPORT utility will use the standard FileKit SMF SDO structures to format the input SMF records. (See the "FileKit
SMF Utilities" publication for details on SMF record segment mappings and field names.)

Report Definition Input - ZZS.SZZSSAM1(ZZSRS002):

The definition includes an OPTION section and sets TOTALS(NO) to suppress automatic accumulation of a grand total for
values in numeric columns. It includes a HEAD: section that defines 3 page header lines where the first line has 2 partitions
and the second and third lines only 1 partition. It also includes a FOOT: section to define a single page footer line of one
partition.

Input field names zJOBNAME and zRST are used in both header and footer line partition print expressions and a gap value
of "5" is used between the zJOBNAME field specification and the character string literal that follows.

OPTIONS: TOTALS(NO)

HEAD:
 #TIMESTMP / 'PAGE' #PAGE (RIGHT,3)
 "SMF Record Type 30-4 (Step Termination) Statistics"
 "First Jobname:" zJOBNAME 5 'Terminating at:' zRST

FOOT:
 "Last Jobname:" zJOBNAME 5 'Terminating at:' zRST

COLUMNS:
 SMF030_Identification.zRST 'Reader Timestamp'
 SMF030_Identification.zJOBNAME 'Job Name'
 SMF030_Identification.zSTN 'Step#' 5 RIGHT
 SMF030_Identification.zPGM 'Program|Name'
 SMF030_Completion.zSCC ('CC' RIGHT) 3 RIGHT
 SMF030_Processor_Accounting.zCPT ('CPU|Time' RIGHT) 8 RIGHT
 SMF030_IO_Activity.zTEP ('EXCPs' RIGHT) 6 RIGHT
 SMF030_IO_Activity.zAIC ('Connect|Time' RIGHT) 9 RIGHT
 SMF030_IO_Activity.zAIW ('Control|Unit Time' RIGHT) 9 RIGHT
 SMF030_IO_Activity.zAIS ('I/O|Starts' RIGHT) 6 RIGHT

REPORT Utility Execution:

Figure 6. Generate SMF Job Step Report - Page Headers and Footers.

Basic Reporting Change Page Display - Example 2.

2024/09/02 11:04:59 FileKit REPORT Utility 26

In the FileKit SMF Report panel, we enter the names of the report definition library member and input data file (GDG relative
generation -3).

An Output Limit of 16 and a Page Depth of 25 is used to restrict the size of the printed report. The format of the input is
"OFFLINE" to indicate that the SMF records are not being read directly from an SMF log data set. A run type "F" is selected
to execute the REPORT utility in the foreground.

Report Output:

The values substituted for the zJOBNAME and zRST field names have been obtained from the first report column detail
line on the page for header lines and from the last report column detail line on the page for footer lines.

The gap value provides 5 spaces between the job name (length 8) and job termination time specifications in the third page
header line and in the page footer line.

12020/05/06 11:50 PAGE 1
 SMF Record Type 30-4 (Step Termination) Statistics
 First Jobname: SMFCLEAR Terminating at: 2019/02/11 23:25:00.89

 Program CPU Connect Control I/O
 Reader Timestamp Job Name Step# Name CC Time EXCPs Time Unit Time Starts
 ---------------------- -------- ----- -------- --- -------- ------ --------- --------- ------
 2019/02/11 23:25:00.89 SMFCLEAR 1 IFASMFDP 0 00:02.78 15209 00.189952 00.057472 14612
 2019/02/12 01:07:43.36 SMFCLEAR 1 IFASMFDP 0 00:02.86 15209 00.175488 00.053888 14614
 2019/02/12 02:49:59.50 SMFCLEAR 1 IFASMFDP 0 00:02.87 15204 00.202112 00.055296 14610
 2019/02/12 04:31:35.90 SMFCLEAR 1 IFASMFDP 0 00:02.84 15206 00.209536 00.062976 14611
 2019/02/12 06:13:41.43 SMFCLEAR 1 IFASMFDP 0 00:02.45 15204 00.192512 00.054400 14611
 2019/02/12 07:55:07.04 SMFCLEAR 1 IFASMFDP 0 00:03.03 15201 00.191872 00.050944 14610
 2019/02/12 09:37:03.20 SMFCLEAR 1 IFASMFDP 0 00:02.61 15215 00.160256 00.053632 14614
 2019/02/12 10:08:01.62 JGESI 1 SDEAMAIN 0 00:01.28 1460 00.014592 00.002304 518
 2019/02/12 10:33:22.47 JGESI 1 SDEAMAIN 0 00:01.17 1449 00.012288 00.002432 513
 2019/02/12 10:34:15.24 JGESI 1 SDEAMAIN 0 00:01.16 1435 00.017536 00.004352 513
 2019/02/12 10:37:14.73 JGESI 1 SDEAMAIN 0 00:01.15 1436 00.014720 00.003072 514
 2019/02/12 10:39:07.86 JGESI 1 SDEAMAIN 0 00:01.14 1434 00.013824 00.001920 513
 2019/02/12 10:43:12.39 JGESI 1 SDEAMAIN 0 00:01.13 1435 00.014720 00.002816 513
 2019/02/12 10:44:52.76 JGESI 1 SDEAMAIN 0 00:22.31 2556 00.106240 00.015488 1633
 2019/02/12 11:11:37.68 SMFCLEAR 1 IFASMFDP 0 00:02.83 15240 00.283776 00.058496 14619
 2019/02/12 10:52:44.92 JGESI 1 SDEAMAIN 0 20:55.01 34268 02.467712 00.365568 33346

 Last Jobname: JGESI Terminating at: 2019/02/12 10:52:44.92

Basic Reporting Change Page Display - Example 2.

2024/09/02 11:04:59 FileKit REPORT Utility 27

Filter Input Records

By default, all records belonging to the input data set will be read sequentially and values in each record included in the
report output.

There may be occasions when you want to exclude records because they contain values that are not to be included in the
report. For example, you may want to report only on records that contain a particular value in a specific field.

The REPORT utility itself supports record filtering options that may be provided by the user when utility is started. See
example 2. under "Change Column Data Display" where a search string value is supplied in the report panel Find> input
field so that only records that contain the search string are included in the report.

Note that, the REPORT utility supports additional record filtering options for SMF record report generation based on values
at fixed locations within the SMF record data. Specifically, the SMF record type, sub-type, timestamp, sub-system id, job
name and user id.

Although these options provide an perfectly adequate set of possible conditions for report record selection, the following
report section within the report definition member provides a potentially more flexible alternative:

FILTER:•

The following will demonstrate how to specify a filter clause to select and deselect input records for further processing.

The FILTER: Section

The FILTER: section header is followed by a filter clause which may span several records of the report definition member
and is terminated by another report definition header or the end-of-file.

The filter clause supports one or more alternative expressions by which a record may be selected for report processing.

Unlike the FIND search string REPORT utility input option which will select the record if the string is found at any location
within the record, a filter clause expression may test specific fields within the record. Furthermore, the tests need not be for
equality as a number of operators other than "=" (equals) are supported.

For example, the following filter clause will include only records mapped by the "TRACK" record-type mapping where the
track name contains the search string "Love" and artist name is either "Journey" or "U2".

 FILTER:
 INCLUDE TRACK WHERE (NAME << 'Love' & ARTIST IN ('Journey' 'U2'))

Adding this FILTER: section to the report definition in Change Column Display Example 2. would produce the following
output.

12020/05/07 11:17 PAGE 1

 Track
 Release Performing Vocalist Album Duration
 Date or Group Name Track# Track Name (1/1000 sec)
 ---------- ------------------------------- ------ ---------------------------------- ------------
 2006-01-08 Journey 2 Stone In Love 265483
 1983-01-01 Journey 2 Send Her My Love 234546
 1998-04-21 Journey 11 Send Her My Love (Live) 217640
 1998-04-21 Journey 13 Stone In Love (Live) 278533
 1986-01-01 Journey 5 Once You Love Somebody 280346
 1991-11-19 U2 12 Love Is Blindness 263272
 1988-11-04 U2 9 Pride (In the Name of Love) [Live] 267000
 1988-11-04 U2 11 Love Rescue Me 384666
 ====== ============
 == Grand Totals (8 Items) 65 2191486
 ====== ============

Important Note:

If a report definition includes a FILTER: section, then the filter clause will be used in place of any Find search string and,
for SMF reports, any Record type, System Id, Job name and User id record selection criteria specified on the REPORT
utility execution. Therefore, in the above example, the FIND string C'I ' specified in the FileKit Formatted Record Report
panel will be ignored.

Basic Reporting Filter Input Records

2024/09/02 11:04:59 FileKit REPORT Utility 28

Examples

The following examples demonstrate how a FILTER: section may be used to report only on input records that match the
filter clause criteria.

Filter Input Records - Example 1.

This example generates a report from SMF log records. Only SMF record type 14 (INPUT/RDBACK Dataset) records are
processed to report input dataset usage by job name. All other SMF record types are bypassed.

In this example, the required field names are found in the SMF014_INPUT_or_RDBACK_Dataset, SMF014#2_SMS_Class
and SMF014#3_Step_Info record-type definitions which are found in the T014 (SMF record type 14) SDO structure. (See
the "FileKit SMF Utilities" publication for details on SMF record segment mappings and field names.)

Report Definition Input - ZZS.ZZSSAM1(ZZSRS003):

The filter clause in section "FILTER:" will select an input record for processing if the DDname field (SMFTIOE5) does not
begin with "SYS0004" and the allocated DSN begins with either "CBL.CBLI", "JGE" or "NBJ". Alternativley, it will select the
input record if the management class (zMCN) field is "CBLHSM".

HEAD:
 #TIMESTMP / 'PAGE:' #PAGE (RIGHT,3)
 'Dataset Usage by Job Name'

COLUMNS:
 SMF014_INPUT_or_RDBACK_Dataset.zJOBNAME 'Job Name'
 SMF014_INPUT_or_RDBACK_Dataset.zRST 'Reader Timestamp'
 SMF014#3_Step_Info.zSPN 'StepName'
 SMF014#3_Step_Info.zPGN 'PGMName'
 SMF014_INPUT_or_RDBACK_Dataset.JFCB.DSN 'Dataset Name' 24
 SMF014_INPUT_or_RDBACK_Dataset.UCB.SMFEXCP(1) 'EXCPs' 6
 SMF014_INPUT_or_RDBACK_Dataset.JFCB.CRDT 'Created'
 SMF014#2_SMS_Class.zMCN 'MGMTCLAS'
 SMF014#2_SMS_Class.zSCN 'STORCLAS'

FILTER:
 (SMFTIOE5 \>> 'SYS004'
 and (DSN >> 'CBL.CBLI' or DSN >> 'JGE' or DSN >> 'NBJ')
)
 or
 (SMF014#2_SMS_Class.zMCN = 'CBLHSM')

REPORT Utility Execution:

Figure 7. Generate SMF Dataset Usage Report - Filter Input Records.

Only SMF records written between 09:30 and 12:30 on 7th May 2020 will be passed for filter clause testing.

Basic Reporting The FILTER: Section

2024/09/02 11:04:59 FileKit REPORT Utility 29

Unlike values entered in Find String>, User Id>, Job Name> and System Id> input fields, values entered in the
Lo-Date/Time> and HiDate/Time> fields are not overridden by the FILTER clause specification in the report definition.

Report Output:

The report shows values obtained from those input SMF records that satisfy the FILTER clause. Note that the Reader
Timestamp field is the date/time that the reader recognised the JOB card for this job and should not be confused with the
SMF record timestamp used by HiDate/LoDate record selection testing.

12024/03/11 15:53 PAGE: 1
 Dataset Usage by Job Name

 Job Name Reader Timestamp StepName PGMName Dataset Name EXCPs Created MGMTCLAS STORCLAS
 -------- ---------------------- -------- -------- ------------------------ ------ ---------- -------- --------
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.DB.INI 2 2009/08/04 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 CBL.CBLI350.INI 2 2017/10/26 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.CBLI.INI 7 2015/01/12 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 CBL.CBLI350.TLIB 32 2017/10/26 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 CBL.CBLI.SITE.TLIB 33 2013/07/02 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.TLIB 14 2013/10/06 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.WINX 4 2005/11/01 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.WINX 4 2005/11/01 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.TLIB 18 2013/10/06 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 CBL.CBLI350.SMFMAP 21 2019/01/17 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 366 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 270 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 270 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 37 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 270 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 37 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 270 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 37 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 270 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 37 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 270 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 37 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 270 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 37 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 270 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 37 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 270 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 37 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 270 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 JGE.FILEKIT.SMF.SDO 37 2019/05/09 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 CBL.CBLI.SITE.SDO 648 2007/10/25 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 CBL.CBLI350.SDO 395 2018/12/10 CBLDFLT CBLDFLT
 JGE 2019/06/03 09:32:31.61 LGNPRC1 ADFMDF03 CBL.CBLI.SITE.SDO 648 2007/10/25 CBLDFLT CBLDFLT
 ======
 == Grand Totals (33 Items) 5227
 ======

Basic Reporting Filter Input Records - Example 1.

2024/09/02 11:04:59 FileKit REPORT Utility 30

Order Report Output

By default, the REPORT utility processes records in their original input file order.

For example, records in the Formula 1 Drivers data set detailed in Select Report Columns, example 1. are naturally
sequenced in ascending order of unique driver number. Similarly, records in the Album Tracks input file used in Change
Column Data Display, example 2. are sequenced in ascending order of ARTIST name, then ALBUM name and then Track
number. These constitute primary, secondary and tertiary sort key fields respectively.

You may wish to process records in a different order, in which case the following report section may be specified in the
report definition member:

SORT:•

The following will demonstrate use of a SORT: section to re-order input file records for processing.

The SORT: Section

The SORT: section identifies one or more key field names by which input records will be sorted.

Each SORT field name must match the name of an input record field or computed field specified in either the COLUMNS: or
REQUIRED: section. The order in which the field names occur in the SORT: section indicates the hierarchy of the sort fields
so that the first field is the primary key, the second the secondary key, etc.

For example, to sort the Formula 1 Drivers data set so that the driver names are reported in alphabetical order, simply use
the following. (Note that the default sort order for a given sort key field name is ASCENDING.)

 SORT: NAME

Similarly, to change the order of Album Track records so that they are reported in ascending order of ALBUM name (primary
key) and then in descending order of track number (secondary key), use the following:

 SORT: ALBUM; TRACK-NUM (DESCENDING)

See examples that follow for use and sample ouput from these SORT: specifications.

The REPORT utility calls the locally installed SORT utility (e.g. DFSORT or SYNCSORT) to execute the sort process.

Examples

The following examples demonstrate use of the SORT: section to re-organise the order in which records are reported.

Order Report Output - Example 1.

This example uses the same sample Formula 1 Drivers COBOL copy book (ZZSCF1DR) described in Select Report
Columns, Example 1.

Use the same FileKit Formatted Record Report panel input as specified in Select Report Columns, Example 1. but
change the report definition member name to be ZZSRF0D4 and the Page Depth value to be 28.

Report Definition Input - ZZS.ZZSSAM1(ZZSRF0D4):

The definition is identical to that used in Change Page Display, Example 1. but includes a SORT: section to sort the report
records by driver name (NAME).

Basic Reporting Order Report Output

2024/09/02 11:04:59 FileKit REPORT Utility 31

OPTIONS: TOTALS(NO)

HEAD:
 #DAYNAME 0 "," #TODAY / "Formula 1 Statistics"
 "2019 Season Drivers"

FOOT:
 "FIA Database" / "Page" #PAGE (RIGHT,3)

COLUMNS:
 1 /* Insert 1 space before columns. */
 NAME "Driver Name"
 BIRTH-PLACE "Place of Birth"
 COUNTRY "Country"
 NUMBER "Driver#"
 DATE-OF-BIRTH "DOB"
 FIRST-RACE "First Race"
 FIRST-RACE-CIRCUIT "Circuit"

SORT: NAME /* Sort records by NAME field. */

Report Output:

12020/05/12, Tuesday Formula 1 Statistics
 2019 Season Drivers

 Driver Name Place of Birth Country Driver# DOB First Race Circuit
 -------------------- -------------------- -------------------- ------- ---------- ---------- -------
 Alexander Albon London Thailand 23 1996/03/23 2019/03/17 AUS
 Antonio Giovinazzi Martina Franca Italy 99 1993/12/14 2017/03/26 AUS
 Carlos Sainz Jr. Madrid Spain 55 1994/09/01 2015/03/15 AUS
 Charles Leclerc Monte Carlo Monaco 16 1997/10/16 2018/03/25 AUS
 Daniel Ricciardo Perth Australia 3 1989/07/01 2011/07/10 BRI
 Daniil Kvyat Oefa Russian Federation 26 1994/04/26 2014/03/16 AUS
 George Russell Kings Lynn United Kingdom 63 1998/02/15 2019/03/17 AUS
 Kevin Magnussen Roskilde Denmark 20 1992/10/05 2014/03/16 AUS
 Kimi Raikkonen Espoo Finland 7 1979/10/17 2001/03/04 AUS
 Lance Stroll Montreal Canada 18 1998/10/29 2017/03/26 AUS
 Lando Norris Bristol United Kingdom 4 1999/10/13 2019/03/17 AUS
 Lewis Hamilton Stevenage United Kingdom 44 1985/01/07 2007/03/18 AUS
 Max Verstappen Hasselt Netherlands 33 1997/10/30 2015/03/15 AUS
 Nico Hulkenberg Emmerich am Rhein Germany 27 1987/08/19 2010/03/14 BAH
 Pierre Gasly Rouen France 10 1996/02/07 2017/10/01 RUS
 Robert Kubica Krakau Poland 88 1984/12/07 2006/08/06 HUN
 Romain Grosjean Geneva France 8 1986/04/17 2009/08/23 BEL
 Sebastian Vettel Heppenheim Germany 5 1987/07/03 2007/06/17 USA
 Sergio Perez Guadalajara Mexico 11 1990/01/26 2011/03/27 AUS
 Valtteri Bottas Nastola Finland 77 1989/08/28 2013/03/17 AUS

 FIA Database Page 1

Order Report Output - Example 2.

This example uses the same sample Album Tracks COBOL copy book (ZZST1CPC) described in Change Column Data
Display, Example 2.

Use the same FileKit Formatted Record Report panel input as specified in Change Column Data Display, Example 2.
but change the report definition member name to be ZZSRF002 and remove the Output Limit value.

Report Definition Input - ZZS.ZZSSAM1(ZZSRF002):

The definition includes a SORT section to sort records by album title (ALBUM) and then, for each album, sort the tracks in
reverse order of track number (TRACK-NUM). A FILTER: section is included to restrict the report output to only those album
titles that start with the letter "F".

The STATS(NO) option is used to suppress display of totals for numeric data type field columns, but to still output the grand
total number of report items.

Basic Reporting Order Report Output - Example 1.

2024/09/02 11:04:59 FileKit REPORT Utility 32

OPTIONS: STATS(NO)

HEAD:
 #TIMESTMP / 'PAGE:' #PAGE (RIGHT,3)
 "Album Contents - Sorted in Reverse Track Order"

COLUMNS:
 ALBUM "Album" 20
 TRACK-NUM "Track#" 4
 NAME "Track Name" 35
 ARTIST "Artist" 20

SORT: ALBUM; TRACK-NUM (DESCENDING)

FILTER:
 (ALBUM >> 'F')

Report Output:

12020/05/12 15:35 PAGE: 1
 Album Contents - Sorted in Reverse Track Order

 Album Track# Track Name Artist
 -------------------- ------ ----------------------------------- --------------------
 Feel 11 Flow Roachford
 Feel 10 Time Roachford
 Feel 9 Testify Roachford
 Feel 8 Down Roachford
 Feel 7 Move On Roachford
 Feel 6 Nothing Free Roachford
 Feel 5 Naked Without You Roachford
 Feel 4 Someday Roachford
 Feel 3 Don't Make Me Love You Roachford
 Feel 2 How Could I? (Insecurity) Roachford
 Feel 1 Way I Feel Roachford
 Feels Like Today 12 Skin (Sarabeth) Rascal Flatts
 Feels Like Today 11 Oklahoma-Texas Line Rascal Flatts
 Feels Like Today 10 Holes Rascal Flatts
 Feels Like Today 9 Break Away Rascal Flatts
 Feels Like Today 8 The Day Before You Rascal Flatts
 Feels Like Today 7 Here's to You Rascal Flatts
 Feels Like Today 6 When the Sand Runs Out Rascal Flatts
 Feels Like Today 5 Fast Cars and Freedom Rascal Flatts
 Feels Like Today 4 Feels Like Today Rascal Flatts
 Feels Like Today 3 Then I Did Rascal Flatts
 Feels Like Today 2 Bless the Broken Road Rascal Flatts
 Feels Like Today 1 Where You Are Rascal Flatts
 Freedom Fields 13 Send Yourself Away (Bonus Track) Seth Lakeman
 Freedom Fields 12 Band Of Gold Seth Lakeman
 Freedom Fields 11 Final Lot Seth Lakeman
 Freedom Fields 10 The Charmer Seth Lakeman
 Freedom Fields 9 Riflemen Of War Seth Lakeman
 Freedom Fields 8 1643 Seth Lakeman
 Freedom Fields 7 Take No Roufes Seth Lakeman
 Freedom Fields 6 Childe The Hunter Seth Lakeman
 Freedom Fields 5 King And Country Seth Lakeman
 Freedom Fields 4 The Colliers Seth Lakeman
 Freedom Fields 3 The White Hare Seth Lakeman
 Freedom Fields 2 Setting Of The Sun Seth Lakeman
 Freedom Fields 1 Lady Of The Sea Seth Lakeman
 Frontiers 14 Only Solutions Journey
 Frontiers 13 Liberty Journey
 Frontiers 12 Ask the Lonely Journey
 Frontiers 11 Only the Young Journey
 Frontiers 10 Rubicon Journey
 Frontiers 9 Frontiers Journey
 Frontiers 8 Back Talk Journey
 Frontiers 7 Troubled Child Journey
 Frontiers 6 Edge of the Blade Journey
 Frontiers 5 Faithfully Journey
 Frontiers 4 After the Fall Journey
 Frontiers 3 Chain Reaction Journey
 Frontiers 2 Send Her My Love Journey
 Frontiers 1 Separate Ways (Worlds Apart) Journey

 == Grand Totals (50 Items)

Basic Reporting Order Report Output - Example 2.

2024/09/02 11:04:59 FileKit REPORT Utility 33

Order Report Output - Example 3.

This example expands on Change Page Display, example 2. which generates a report from SMF log records. Only SMF
record type 30 (Common Address Space Work) records are processed to report job step totals. All other SMF record types
are bypassed.

Use the same FileKit SMF Report panel input as specified in Change Page Display, example 2. but change the report
definition member name to be ZZSRS004, set the Page Depth to be 47 and remove the Output Limit value.

Report Definition Input - ZZS.ZZSSAM1(ZZSRS004):

A SORT:, FILTER: and STATISTICS: section is added to the report definition specified by member ZZSRS002, so that only
job steps that finish with a non-zero condition code are reported and the report records are first sorted by job name and then
by job reader timestamp.

The STATISTICS: section specifies the columns of numeric or TIME data type for which statistics will be gathered (default is
totals).

HEAD:
 #TIMESTMP / 'PAGE' #PAGE (RIGHT,3)
 "SMF Record Type 30-4 (Step Termination) Statistics"
 "First Jobname:" zJOBNAME 5 'Terminating at:' zRST

FOOT:
 "Last Jobname:" zJOBNAME 5 'Terminating at:' zRST

COLUMNS:
 SMF030_Identification.zRST 'Reader Timestamp'
 SMF030_Identification.zJOBNAME 'Job Name'
 SMF030_Identification.zSTN 'Step#' 5 RIGHT
 SMF030_Identification.zPGM 'Program|name'
 SMF030_Completion.zSCC ('CC' RIGHT) 3 RIGHT
 SMF030_Processor_Accounting.zCPT ('CPU|Time' RIGHT) 8 RIGHT
 SMF030_IO_Activity.zTEP ('EXCPs' RIGHT) 6 RIGHT
 SMF030_IO_Activity.zAIC ('Connect|Time' RIGHT) 9 RIGHT
 SMF030_IO_Activity.zAIW ('Control|Unit Time' RIGHT) 9 RIGHT
 SMF030_IO_Activity.zAIS ('I/O|Starts' RIGHT) 6 RIGHT

FILTER:
 SMF030_Completion.zSCC > 0

SORT:
 SMF030_Identification.zJOBNAME
 SMF030_Identification.zRST

STATISTICS:
 SMF030_IO_Activity.zAIC
 SMF030_IO_Activity.zTEP
 SMF030_Processor_Accounting.zCPT
 SMF030_IO_Activity.zAIW
 SMF030_IO_Activity.zAIS

Report Output:

Only job steps with a non-zero condition code are displayed (CC<>0).

The job step report records are in alphabetical order of job name and, where the job names are the same, ascending
chronological order of reader timestamp.

Basic Reporting Order Report Output - Example 3.

2024/09/02 11:04:59 FileKit REPORT Utility 34

12020/05/14 16:43 PAGE 1
 SMF Record Type 30-4 (Step Termination) Statistics
 First Jobname: JGE Terminating at: 2019/02/12 09:34:47.30

 Program CPU Connect Control I/O
 Reader Timestamp Job Name Step# name CC Time EXCPs Time Unit Time Starts
 ---------------------- -------- ----- -------- --- -------- ------ --------- --------- ------
 2019/02/12 09:34:47.30 JGE 1 ADFMDF03 314 06:00.00 192641 03.113728 00.286976 100028
 2019/02/13 09:47:00.38 JGE 1 ADFMDF03 314 08:49.80 432414 12.649088 02.514816 336998
 2019/02/14 09:36:17.86 JGE 1 ADFMDF03 570 02:07.19 63145 01.526784 00.150784 22593
 2019/02/14 12:37:10.84 JGE 1 ADFMDF03 570 06:29.31 259307 07.144192 01.639424 214213
 2019/02/14 15:15:25.94 JGE 1 ADFMDF03 314 02:58.72 208674 04.070016 00.325376 97680
 2019/02/12 12:38:57.08 JGESI 1 SDEAMAIN 546 00:42.23 3628 00.137856 00.019456 2697
 2019/02/12 12:50:39.59 JGESI 1 SDEAMAIN 546 01:41.70 5993 00.300416 00.045312 5071
 2019/02/12 14:08:32.20 JGESI 1 SDEAMAIN 082 00:00.00 0 00.001408 00.000256 38
 2019/02/12 14:08:56.70 JGESI 1 SDEAMAIN 082 00:00.00 0 00.000896 00.000384 38
 2019/02/12 14:09:07.73 JGESI 1 SDEAMAIN 546 00:02.67 1564 00.026496 00.004992 620
 2019/02/12 14:09:22.87 JGESI 1 SDEAMAIN 546 00:10.48 1928 00.033152 00.007424 1005
 2019/02/12 14:09:55.04 JGESI 1 SDEAMAIN 058 27:12.31 40042 02.913792 00.387072 39120
 2019/02/12 14:49:54.73 JGESI 1 SDEAMAIN 22 00:00.74 1190 00.009344 00.001792 356
 2019/02/12 14:50:11.42 JGESI 1 SDEAMAIN 4 00:00.83 1172 00.010624 00.002176 356
 2019/02/12 09:45:13.10 JGE2 1 ADFMDF03 314 01:53.17 63685 02.413824 00.464768 58846
 2019/02/14 15:17:57.40 JGE2 1 ADFMDF03 314 01:16.29 53900 02.133760 00.375424 50097
 2019/02/12 15:30:45.39 SDEFFOB1 1 ASMA90 8 00:02.42 3072 00.350720 00.002560 301
 2019/02/13 10:59:05.63 SDEFFOB1 1 ASMA90 4 00:00.24 307 00.004864 00.001536 157
 2019/02/13 10:59:05.63 SDEFFOB1 2 IEWL 12 00:00.13 149 00.003200 00.001152 65
 2019/02/13 11:02:38.53 SDEFFOB1 1 ASMA90 4 00:00.23 297 00.005376 00.001280 157
 2019/02/13 11:02:38.53 SDEFFOB1 2 IEWL 12 00:00.13 149 00.002304 00.000256 66
 2019/02/14 10:57:38.46 SDEFFSU0 1 ASMA90 8 00:02.19 2917 00.025216 00.003072 283
 2019/02/14 12:10:50.55 SDEFFSU2 1 ASMA90 8 00:02.47 3459 00.062336 00.002304 314
 2019/02/14 10:31:37.83 SDEFFSU3 1 ASMA90 8 00:01.94 2909 00.024448 00.002816 279
 2019/02/14 10:41:24.06 SDEFFSU3 1 ASMA90 8 00:02.30 2882 00.118656 00.001920 265
 2019/02/14 10:44:28.21 SDEFFSU3 1 ASMA90 8 00:02.40 2884 00.023936 00.002048 278
 2019/02/13 10:22:58.62 SDEFRPO1 1 ASMA90 8 00:02.79 3911 00.044160 00.004608 404
 2019/02/12 14:44:49.48 SDEFSEO2 1 ASMA90 4 00:00.54 802 00.004736 00.001408 202
 2019/02/12 14:44:49.48 SDEFSEO2 2 IEWL 12 00:00.16 161 00.002816 00.000384 73
 2019/02/12 14:45:41.22 SDEFSEO2 1 ASMA90 8 00:02.85 3362 00.212736 00.003456 312
 2019/02/12 15:59:17.64 SDEFSEO2 1 ASMA90 8 00:02.36 3373 00.043264 00.002944 316
 2019/02/12 16:07:29.96 SDEFSEO2 1 ASMA90 8 00:02.38 3536 00.142080 00.002432 300
 2019/02/12 16:16:13.34 SDEFSEO2 1 ASMA90 12 00:02.40 3546 00.031616 00.002304 318
 2019/02/12 16:17:42.67 SDEFSEO2 1 ASMA90 8 00:02.43 3552 00.042368 00.002560 304
 2019/02/13 15:33:03.50 SDELMAIN 2 IEWL 4 00:00.30 259 00.019840 00.000384 71
 ======== ====== ========= ========= ======
 == Grand Totals (35 Items) 59:56.10 >1370K 37.650048 06.265856 934221
 ======== ====== ========= ========= ======

 Last Jobname: SDELMAIN Terminating at: 2019/02/13 15:33:03.50

Basic Reporting Order Report Output - Example 3.

2024/09/02 11:04:59 FileKit REPORT Utility 35

Insert Breaks

Inserting control breaks in the printed report provides a method by which groups of report lines that share a common column
value may be distinguished from each other.

For example, the report generated by Order Report Ouput, example 2. has been sorted first by ALBUM column values and
so all the report detail lines are grouped together by a common album title. The first group of detail lines are for the album
entitled "Feel", the second group for album entitled "Feel Like Today" and so on. To make the report more readable and
potentially insert statistical information and lines of text between the group detail lines, a control break may be defined which
is triggered whenever there is a change in the ALBUM column value.

To define a control break and optionally identify columns for which statistical data will be reported (e.g. maximum or average
values), then the following report sections may be specified in the report definition member:

BREAK:•
STATISTICS:•

The following will demonstrate use of the BREAK: section to define a single control break for printed report output. Use of
BREAK: to define multiple control breaks discussed later.

The BREAK: Section

The BREAK: section defines one or more control breaks where each control break definition is specified on a single control
statement.

A control break definition identifies the field name for which a change in value will trigger the control break. This field name
must match the name of an input record field or computed field specified in either the COLUMNS: or REQUIRED: section.

For example, to trigger a control break in the printed report when there is a change in album title (input record field name
ALBUM), simply use the following.

 COLUMNS: ALBUM; TRACK-NUM; NAME; ARTIST
 SORT: ALBUM /* Sort by Album Title. */
 BREAK: ALBUM /* Control break on change in Album Title. */

A control break denotes the end of one group of report detail lines and the start of the next group. Each group of report
detail lines produced by a single control break definition is referred to as a control group. In our example, there is only one
control break definition (for field name ALBUM) and so the groups may be referenced as ALBUM control groups.

The report lines printed between control groups are break lines defined by the control break. These may be customised so
that blank lines, lines of text and/or lines containing statistical values (totals, averages, etc.) are displayed. If no
customisation is specified on a control break definition, then 3 or 4 default break lines are printed after the control group as
follows:

A line containing blanks and underline symbols "-" (hyphon) or, for the #GRAND (end-of-report) break, "=" (equals).
The underline symbols underline column values for which statistical values are generated and extend for the full
width of each column. If no statistics values are to be generated for any of the report display columns, then no
underlining exists and this line will contain only blanks.

1.

A line containing the following text:
Either "== Totals for fieldname" (where fieldname is the break trigger field) or "== Grand Totals" if output
is for the #GRAND (end-of-report) break.

♦

"(items ITEMS)" where items is the number of items (record detail lines) in the last control group.♦

A total of the values in each column for which statistics are generated. These totals are obtained for
record detail lines belonging to the last control group only. (Note that the #GRAND control group
comprises all detail lines in the report.)

♦

2.

For the #GRAND break only, a line which is identical to the first break line containing statistics column underlines.3.

A blank line.4.

Example 1. that follows demonstrates the default break line output.

Control break definitions support operands that customise the break lines produced when the control break is triggered.
These include operands that display a report line for each of the average, total, minimum, maximum, non-zero average
and non-zero minimum values generated for the statistics columns in addition to specific control group header and footer
text. See Example 2. and Example 3. that follow.

Basic Reporting Insert Breaks

2024/09/02 11:04:59 FileKit REPORT Utility 36

BREAK Line Text

Break heading, footing and statistics line contain text that may be costomised as part of the control break definition.

The control break operands AVERAGE, MAXIMUM, MINIMUM, NZAVERAGE, NZMINIMUM, TOTAL, FOOTING and
HEADING each support specification of a parenthesised print-expression. A print-expression is comprised of one or more
text fragment specifications which together produce a single line of text. (The text line itself may be split over several report
output lines using the "<NEWLINE>" keyword in the print-expression.)

A text fragment may be represented as a character literal or as an input, computed or built-in field name. If specified as a
field name, then the current value of the field will be substitued when the text is written to the report. For break HEADING
lines, this will be a value obtained from the next output report detail line. For all other break lines, theis will be a value
obtained from the previous output report detail line.

Each text fragment has a default width and alignment which may be changed using parenthesised overrides that
immediately follow the fragment definition. Additionally, the default gap of 1 blank between 2 fragments of text may be
overridden simply by specifying a number of blanks (gap) value between the 2 fragment definitions.

For example, the following is a control break definition for field name "ALBUM":

 BREAK:
 ALBUM FOOTING('Number of entries for' ALBUM (20,STRIP) 0 ':' #ITEMS (LEFT))

The break footing line text is defined by a print-expression comprised of 4 text fragments:

A character string literal, 'Number of entries for'.1.
An input field name, ALBUM.2.
A character string literal, ':'.3.
The built-in field name: #ITEMS.4.

The value inserted by the "ALBUM" (album name) text fragment is truncated to a width of 20 characters and then leading
and trailing blanks stripped due to the parenthesised override "(20,STRIP)". A gap value of "0" (zero) immediately follows
so that the next text fragment (character string ":") is placed immediately following the album title. The value substitued for
the "#ITEMS" field name represents the number of items (report detail lines) contained in the ALBUM control group just
printed. The #ITEMS value is left adjusted because of the "(LEFT)" override, so that only 1 blank will occur between the ":"
and the first digit of the numeric value.

The STATISTICS: Section

The STATISTICS: section identifies field names assigned to columns definitions in the COLUMNS: section. These columns
are then identified as being statistics columns for which statistical data will be accumulated and reported.

Field names specified in the STATISTICS: section must identify fields that are of numeric data type or data type TIME,
which will be treated as an elapsed time value. Fields of character data type may be specified if the values are numeric (i.e.
contain only decimal digits and possibly a decimal point).

By default, every report column defined by an input field of numeric data type is treated as being a statistics column.

For example, the following report contains 3 columns of numeric data type ("LAPS", "LAP-LENGTH-KM" and "TURNS") and
1 of data type TIME ("RACE-LAP-RECORD"). By default, statistical information (totals values) would be maintained for the 3
columns of numeric data type, however, the STATISTICS: section overrides this and identifies columns "LAP-LENGTH-KM"
and "RACE-LAP-RECORD" as the staistics columns instead.

 COLUMNS:
 TRACK "Track Name"
 LAPS "#Laps"
 LAP-LENGTH-KM "Lap Distance (KM)"
 TURNS "#Turns/Lap"
 RACE-LAP-RECORD "Lap Record (HH:MM:SS.MMM)"

 STATISTICS:
 LAP-LENGTH-KM; RACE-LAP-RECORD

By default, totals values are generated for the statistics columns and are reported at each control break. This includes the
implied #GRAND control break which is triggered at end-of-report. (Options BRKTOTALS, GRANDTOTAL and TOTALS
may suppress this default behaviour.)

The BREAK: section defines control breaks for which output of the totals values may be suppressed (NOTOTAL) and/or for
which additional statistical information may be reported.

For example, a control break definition may contain parameter keyword NZAVERAGE which will ensure that average
values are generated for non-zero values in the statistics columns. When the control break is triggered, a break line
containing the average values for the control group is reported.

Basic Reporting The BREAK: Section

2024/09/02 11:04:59 FileKit REPORT Utility 37

Examples

The following examples demonstrate use of the BREAK: section to trigger control breaks and to customise the printed break
report lines.

The following examples show how a control break may be triggered for groups of report lines that contain the same values
in one of the fields either displayed as column data or associated with the report lines. In particular, the examples
demonstrate:

Use of the BREAK: report section to define a single control break.•

Use of the STATISTICS: report section to eplicitly identify report columns for which statistical information will be
collated and reported at each control break.

•

Use of the REQUIRED: report section in order to sort and create a control break on a field not displayed as column
data.

•

Specification of the types of statistical data to be reported for a particular control break definition.•

Use of a print-expression to customise break line text.•

Substitution of input record and built-in field values in print-expressions.•

Use of gap values to override spacing between print-expression text fragments.•

Insert Breaks - Example 1.

This example uses the same sample Album Tracks COBOL copy book (ZZST1CPC) described in Change Column Data
Display, Example 2.

Use the same FileKit Formatted Record Report panel input as specified in Change Column Data Display, Example 2.
but change the report definition member name to be ZZSRF003 and remove the Output Limit value.

Report Definition Input - ZZS.ZZSSAM1(ZZSRF003):

The definition is almost identical to that used in Order Report Output, Example 2. but includes a BREAK: section to trigger a
control break when the album title (ALBUM) changes and output default break line information. It also reports the track time
in milli-seconds (TOTAL-TIME) field, for which statistical values are generated. and filters records so that only album titles
beginning with the string "Feel" are selected.

HEAD:
 #TIMESTMP / 'PAGE:' #PAGE (RIGHT,3)
 "Album Contents - Sorted in Reverse Track Order"

COLUMNS:
 ALBUM "Album" 20
 TRACK-NUM "Track#" 4
 NAME "Track Name" 35
 ARTIST "Artist" 20
 TOTAL-TIME "Time (1/1000 sec)"

SORT: ALBUM; TRACK-NUM (DESCENDING)
BREAK: ALBUM

STATISTICS: TOTAL-TIME

FILTER:
 (ALBUM >> 'Feel')

Basic Reporting The STATISTICS: Section

2024/09/02 11:04:59 FileKit REPORT Utility 38

Report Output:

12020/05/18 16:10 PAGE: 1
 Album Contents - Sorted in Reverse Track Order

 Album Track# Track Name Artist Time (1/1000 sec)
 -------------------- ------ ----------------------------------- -------------------- -----------------
 Feel 11 Flow Roachford 281054
 Feel 10 Time Roachford 452417
 Feel 9 Testify Roachford 217292
 Feel 8 Down Roachford 244645
 Feel 7 Move On Roachford 267818
 Feel 6 Nothing Free Roachford 269026
 Feel 5 Naked Without You Roachford 209536
 Feel 4 Someday Roachford 210326
 Feel 3 Don't Make Me Love You Roachford 232710
 Feel 2 How Could I? (Insecurity) Roachford 224769
 Feel 1 Way I Feel Roachford 226023

 == Totals for Feel (11 Items) 2835616

 Feels Like Today 12 Skin (Sarabeth) Rascal Flatts 261280
 Feels Like Today 11 Oklahoma-Texas Line Rascal Flatts 175013
 Feels Like Today 10 Holes Rascal Flatts 258933
 Feels Like Today 9 Break Away Rascal Flatts 191680
 Feels Like Today 8 The Day Before You Rascal Flatts 246440
 Feels Like Today 7 Here's to You Rascal Flatts 217840
 Feels Like Today 6 When the Sand Runs Out Rascal Flatts 226506
 Feels Like Today 5 Fast Cars and Freedom Rascal Flatts 263053
 Feels Like Today 4 Feels Like Today Rascal Flatts 201640
 Feels Like Today 3 Then I Did Rascal Flatts 192586
 Feels Like Today 2 Bless the Broken Road Rascal Flatts 227186
 Feels Like Today 1 Where You Are Rascal Flatts 232933

 == Totals for Feels Like Today (12 Items) 2695090

 =================
 ==== Grand Totals (23 Items) 5530706
 =================

Insert Breaks - Example 2.

This example uses the sample Formula 1 Race Results FileKit SDO structure (ZZSSF1RE) to format records from the input
data set which contains details of the results of Formula 1 races staged in the 2019 championship.

See Appendix C. Sample Data for description of the sample ZZSSF1RE FileKit SDO structure layout.

Report Definition Input - ZZS.ZZSSAM1(ZZSRF0R1):

Input field name "DRIVER" is used to SORT the report output detail lines so that report detail lines are grouped together by
driver name. It is also used as the trigger for a control BREAK and referenced in the break line HEADING and FOOTING
print-expressions in order to display the next/previous driver name value in the break's heading and footing text.

"DRIVER" is not used as a column definition in the COLUMNS: section and so its values are not reported in the detail lines.
Therefore, field name "DRIVER" must be specified in the REQUIRED: section. Similarly for "DRIVER-TEAM" which is used
in the FILTER: section to select only drivers that race for team Mercedes.

Statistical data will be generated for column "FINISH-TIME" only, as specified by the STATISTICS: section. By default, the
statistical information includes the sum total of the elapsed values reported in the "FINISH-TIME" column.

In addition to the default #GRAND break which will report the grand total of "FINISH-TIME" values for all detail lines in the
report, the control break definition for field name "DRIVER" will mean that a separate "FINISH-TIME" totals values will be
generated for detail lines in each DRIVER control group. Furthermore, NZAVERAGE and MAXIMUM in the control break
definition means that an average value (which excludes zero values) and the maximum value will also be reported for
"FINISH-TIME" values in each DRIVER control group.

The single control break definition includes a HEADING and FOOTING specification to output heading text before the first
detail line in the DRIVER control group and footing text after the last line of control group statistics values. <NEWLINE> is
used in the print-expressions to force a line break. SPACEAFTER(1) will output a blank line following the last break line.

Basic Reporting Insert Breaks - Example 1.

2024/09/02 11:04:59 FileKit REPORT Utility 39

REQUIRED: DRIVER; DRIVER-TEAM

COLUMNS: EVENT "Race#"
 TRACK "Track"
 GRID-POSITION "Grid" 2
 POSITION "Finish" 2
 LAPS-COMPLETED "Laps" 2
 POINTS "Points" 2
 NOTES "Notes"
 FINISH-TIME "Time"

SORT: DRIVER
BREAK: DRIVER \
 HEADING(\
 <NEWLINE> 'Race Finish Times for' DRIVER \
 <NEWLINE> '--' \
) \
 NZAVERAGE \
 MAXIMUM \
 FOOTING(\
 <NEWLINE> 10 '-- End of Results for' DRIVER (STRIP) '---' \
) \
 SPACEAFTER(1)

STATISTICS: FINISH-TIME

FILTER: (DRIVER-TEAM = "Mercedes")

REPORT Utility Execution:

Using the FileKit Formatted Record Report panel, we enter the names of the report definition, input data file and record
mapping library member (type SDO). A run type "F" is selected to execute the REPORT utility in the foreground and to
ensure report output fits on one page, the Page Depth is set to 100.

Figure 8. Generate Formula 1 Results by Driver printed report.

Basic Reporting Insert Breaks - Example 2.

2024/09/02 11:04:59 FileKit REPORT Utility 40

Report Output:

12020/05/21 12:10 PAGE 1

 Race# Track Grid Finish Laps Points Notes Time
 ------- ----- ---- ------ ---- ------ -------------------- ----------------

 Race Finish Times for Lewis Hamilton
 --
 2019#01 AUS 1 2 58 18 01:25:48.211200
 2019#02 BAH 3 1 57 25 01:34:21.294592
 2019#03 CHI 2 1 56 25 01:32:06.349824
 2019#04 AZE 2 2 51 18 01:31:54.466304
 2019#05 SPA 2 1 66 26 Fastest Lap 01:35:50.443008
 2019#06 MON 1 1 78 25 01:43:28.437248
 2019#07 CAN 2 1 70 25 01:29:07.084288
 2019#08 FRE 1 1 53 25 01:24:31.198208
 2019#09 OST 4 5 71 10 01:22:24.626688
 2019#10 BRI 2 1 52 26 Fastest Lap 01:21:08.452352
 2019#11 GER 1 9 64 2 01:44:50.941952
 2019#12 HUN 3 1 70 25 01:35:03.795712
 2019#13 BEL 3 2 44 18 01:23:46.691072
 2019#14 ITA 2 3 53 16 Fastest Lap 01:16:01.863680
 2019#15 SIN 2 4 61 12 01:58:38.274560
 2019#16 RUS 2 1 53 26 Fastest Lap 01:33:38.992128
 2019#17 JAP 4 3 52 16 Fastest Lap 01:22:00.612864
 2019#18 MEX 3 1 71 25 01:36:48.904192
 2019#19 USA 5 2 56 18 01:33:59.800832
 2019#20 BRA 3 7 71 6 01:33:25.817344
 2019#21 ABU 1 1 55 26 Fastest Lap 01:34:05.715456

 == Totals for Lewis Hamilton (21 Items) 32:13:01.973504
 Maximum Value 01:58:38.274560
 Average of NON-ZERO Values 01:32:02.951119

 -- End of Results for Lewis Hamilton ---

 Race Finish Times for Valtteri Bottas
 --
 2019#01 AUS 2 1 58 26 Fastest Lap 01:25:27.324672
 2019#02 BAH 4 2 57 18 01:34:24.275456
 2019#03 CHI 1 2 56 18 01:32:12.902400
 2019#04 AZE 1 1 51 25 01:31:52.941568
 2019#05 SPA 1 2 66 18 01:35:54.517504
 2019#06 MON 2 3 78 15 01:43:31.599360
 2019#07 CAN 6 4 70 13 Fastest Lap 01:29:58.126592
 2019#08 FRE 2 2 53 18 01:24:49.254400
 2019#09 OST 3 3 71 15 01:22:20.781568
 2019#10 BRI 1 2 52 18 01:21:33.379584
 2019#11 GER 3 0 56 0 Spun Off 00:00:00.000000
 2019#12 HUN 2 8 69 4 01:35:35.923712
 2019#13 BEL 4 3 44 15 01:23:58.295040
 2019#14 ITA 3 2 53 18 01:15:27.500288
 2019#15 SIN 5 5 61 10 01:58:39.785984
 2019#16 RUS 4 2 53 18 01:33:42.820864
 2019#17 JAP 3 1 52 25 01:21:46.755072
 2019#18 MEX 5 3 71 15 01:36:52.457472
 2019#19 USA 1 1 56 25 01:33:55.652608
 2019#20 BRA 4 0 51 0 Power Unit 00:00:00.000000
 2019#21 ABU 20 4 55 12 01:34:50.093568

 == Totals for Valtteri Bottas (21 Items) 28:56:54.387712
 Maximum Value 01:58:39.785984
 Average of NON-ZERO Values 01:31:24.967774

 -- End of Results for Valtteri Bottas ---

 ================
 ==== Grand Totals (42 Items) 61:09:56.361216
 ================

Insert Breaks - Example 3.

This example expands on Order Report Output, example 3. which generates a report from SMF log records. Only SMF
record type 30 (Common Address Space Work) records are processed to report job step totals. All other SMF record types
are bypassed.

Use the same FileKit SMF Report panel input as specified in Change Page Display, example 2. but change the report
definition member name to be ZZSRS005, set the Page Depth to be 85 and remove the Output Limit value.

Basic Reporting Insert Breaks - Example 3.

2024/09/02 11:04:59 FileKit REPORT Utility 41

Report Definition Input - ZZS.ZZSSAM1(ZZSRS005):

A BREAK: section is added to the report definition specified by member ZZSRS004, so that a control break is triggered
when there is a change in Job Name (field zJOBNAME). To limit the size of the report, the FILTER: section filter clause is
also updated to select only records where the reader timestamp is "2019/02/13" or later.

When the zJOBNAME coontrol break is triggered, report break lines are written that display the totals, non-zero average,
non-zero minimum and maximum values of entries in the statistics columns (identified by the STATISTICS: section). Also,
for each zJOBNAME control break, 2 blank lines are written after the last break line.

HEAD:
 #TIMESTMP / 'PAGE' #PAGE (RIGHT,3)
 "SMF Record Type 30-4 (Step Termination) Statistics"
 "First Jobname:" zJOBNAME 5 'Terminating at:' zRST

FOOT:
 "Last Jobname:" zJOBNAME 5 'Terminating at:' zRST

COLUMNS:
 SMF030_Identification.zRST 'Reader Timestamp'
 SMF030_Identification.zJOBNAME 'Job Name'
 SMF030_Identification.zSTN 'Step#' 5 RIGHT
 SMF030_Identification.zPGM 'Program|name'
 SMF030_Completion.zSCC ('CC' RIGHT) 3 RIGHT
 SMF030_Processor_Accounting.zCPT ('CPU|Time' RIGHT) 8 RIGHT
 SMF030_IO_Activity.zTEP ('EXCPs' RIGHT) 6 RIGHT
 SMF030_IO_Activity.zAIC ('Connect|Time' RIGHT) 9 RIGHT
 SMF030_IO_Activity.zAIW ('Control|Unit Time' RIGHT) 9 RIGHT
 SMF030_IO_Activity.zAIS ('I/O|Starts' RIGHT) 6 RIGHT

FILTER:
 (SMF030_Completion.zSCC > x'0' & SMF030_Identification.zRST >= '2019/02/13')

SORT:
 SMF030_Identification.zJOBNAME
 SMF030_Identification.zRST

BREAK:
 SMF030_Identification.zJOBNAME \
 NZAVERAGE MAXIMUM NZMINIMUM SPACEAFTER(2)

STATISTICS:
 SMF030_IO_Activity.zAIC
 SMF030_IO_Activity.zTEP
 SMF030_Processor_Accounting.zCPT
 SMF030_IO_Activity.zAIW
 SMF030_IO_Activity.zAIS

Basic Reporting Insert Breaks - Example 3.

2024/09/02 11:04:59 FileKit REPORT Utility 42

Report Output:

12020/05/21 17:37 PAGE 1
 SMF Record Type 30-4 (Step Termination) Statistics
 First Jobname: JGE Terminating at: 2019/02/13 09:47:00.38

 Program CPU Connect Control I/O
 Reader Timestamp Job Name Step# name CC Time EXCPs Time Unit Time Starts
 ---------------------- -------- ----- -------- --- -------- ------ --------- --------- ------
 2019/02/13 09:47:00.38 JGE 1 ADFMDF03 314 08:49.80 432414 12.649088 02.514816 336998
 2019/02/14 09:36:17.86 JGE 1 ADFMDF03 570 02:07.19 63145 01.526784 00.150784 22593
 2019/02/14 12:37:10.84 JGE 1 ADFMDF03 570 06:29.31 259307 07.144192 01.639424 214213
 2019/02/14 15:15:25.94 JGE 1 ADFMDF03 314 02:58.72 208674 04.070016 00.325376 97680
 -------- ------ --------- --------- ------
 == Totals for JGE (4 Items) 20:25.02 963540 25.390080 04.630400 671484
 Maximum Value 08:49.80 432414 12.649088 02.514816 336998
 Average of NON-ZERO Values 05:06.26 240885 06.347520 01.157600 167871
 Minimum of NON-ZERO Values 02:07.19 63145 01.526784 00.150784 22593

 2019/02/14 15:17:57.40 JGE2 1 ADFMDF03 314 01:16.29 53900 02.133760 00.375424 50097
 -------- ------ --------- --------- ------
 == Totals for JGE2 (1 Items) 01:16.29 53900 02.133760 00.375424 50097
 Maximum Value 01:16.29 53900 02.133760 00.375424 50097
 Average of NON-ZERO Values 01:16.29 53900 02.133760 00.375424 50097
 Minimum of NON-ZERO Values 01:16.29 53900 02.133760 00.375424 50097

 2019/02/13 10:59:05.63 SDEFFOB1 1 ASMA90 4 00:00.24 307 00.004864 00.001536 157
 2019/02/13 10:59:05.63 SDEFFOB1 2 IEWL 12 00:00.13 149 00.003200 00.001152 65
 2019/02/13 11:02:38.53 SDEFFOB1 1 ASMA90 4 00:00.23 297 00.005376 00.001280 157
 2019/02/13 11:02:38.53 SDEFFOB1 2 IEWL 12 00:00.13 149 00.002304 00.000256 66
 -------- ------ --------- --------- ------
 == Totals for SDEFFOB1 (4 Items) 00:00.73 902 00.015744 00.004224 445
 Maximum Value 00:00.24 307 00.005376 00.001536 157
 Average of NON-ZERO Values 00:00.18 226 00.003936 00.001056 111
 Minimum of NON-ZERO Values 00:00.13 149 00.002304 00.000256 65

 2019/02/14 10:57:38.46 SDEFFSU0 1 ASMA90 8 00:02.19 2917 00.025216 00.003072 283
 -------- ------ --------- --------- ------
 == Totals for SDEFFSU0 (1 Items) 00:02.19 2917 00.025216 00.003072 283
 Maximum Value 00:02.19 2917 00.025216 00.003072 283
 Average of NON-ZERO Values 00:02.19 2917 00.025216 00.003072 283
 Minimum of NON-ZERO Values 00:02.19 2917 00.025216 00.003072 283

 2019/02/14 12:10:50.55 SDEFFSU2 1 ASMA90 8 00:02.47 3459 00.062336 00.002304 314
 -------- ------ --------- --------- ------
 == Totals for SDEFFSU2 (1 Items) 00:02.47 3459 00.062336 00.002304 314
 Maximum Value 00:02.47 3459 00.062336 00.002304 314
 Average of NON-ZERO Values 00:02.47 3459 00.062336 00.002304 314
 Minimum of NON-ZERO Values 00:02.47 3459 00.062336 00.002304 314

 2019/02/14 10:31:37.83 SDEFFSU3 1 ASMA90 8 00:01.94 2909 00.024448 00.002816 279
 2019/02/14 10:41:24.06 SDEFFSU3 1 ASMA90 8 00:02.30 2882 00.118656 00.001920 265
 2019/02/14 10:44:28.21 SDEFFSU3 1 ASMA90 8 00:02.40 2884 00.023936 00.002048 278
 -------- ------ --------- --------- ------
 == Totals for SDEFFSU3 (3 Items) 00:06.64 8675 00.167040 00.006784 822
 Maximum Value 00:02.40 2909 00.118656 00.002816 279
 Average of NON-ZERO Values 00:02.21 2892 00.055680 00.002261 274
 Minimum of NON-ZERO Values 00:01.94 2882 00.023936 00.001920 265

 2019/02/13 10:22:58.62 SDEFRPO1 1 ASMA90 8 00:02.79 3911 00.044160 00.004608 404
 -------- ------ --------- --------- ------
 == Totals for SDEFRPO1 (1 Items) 00:02.79 3911 00.044160 00.004608 404
 Maximum Value 00:02.79 3911 00.044160 00.004608 404
 Average of NON-ZERO Values 00:02.79 3911 00.044160 00.004608 404
 Minimum of NON-ZERO Values 00:02.79 3911 00.044160 00.004608 404

 2019/02/13 15:33:03.50 SDELMAIN 2 IEWL 4 00:00.30 259 00.019840 00.000384 71
 -------- ------ --------- --------- ------
 == Totals for SDELMAIN (1 Items) 00:00.30 259 00.019840 00.000384 71
 Maximum Value 00:00.30 259 00.019840 00.000384 71
 Average of NON-ZERO Values 00:00.30 259 00.019840 00.000384 71
 Minimum of NON-ZERO Values 00:00.30 259 00.019840 00.000384 71

 ======== ====== ========= ========= ======
 ==== Grand Totals (16 Items) 21:56.43 >1037K 27.858176 05.027200 723920
 ======== ====== ========= ========= ======

 Last Jobname: SDELMAIN Terminating at: 2019/02/13 15:33:03.50

Basic Reporting Insert Breaks - Example 3.

2024/09/02 11:04:59 FileKit REPORT Utility 43

Summary Reports

A summary report suppresses output of the report detail lines but includes page headers, footers and control break lines.

Generating a summary report is particularly useful if you only wish to report statistical values for groups of records that
contain the same value in a particular column.

To suppress all report detail lines and generate a summary report, the following must be specified in the report definition
member:

OPTIONS: SUMMARY•

Adding this to each of the report definitions described in examples for Insert Breaks produces summary reports as follows:

Examples

Summary Report - Example 1.

Report Output:

See Insert Breaks, example 1.

12020/05/22 12:47 PAGE: 1
 Album Contents - Sorted in Reverse Track Order

 Album Track# Track Name Artist Time (1/1000 sec)
 -------------------- ------ ----------------------------------- -------------------- -----------------

 == Totals for Feel (11 Items) 2835616

 == Totals for Feels Like Today (12 Items) 2695090
 =================
 ==== Grand Totals (23 Items) 5530706
 =================

Summary Report - Example 2.

Report Output:

See Insert Breaks, example 2.

12020/05/22 12:48 PAGE 1

 Race# Track Grid Finish Laps Points Notes Time
 ------- ----- ---- ------ ---- ------ -------------------- ----------------

 Race Finish Times for Lewis Hamilton
 --

 == Totals for Lewis Hamilton (21 Items) 32:13:01.973504
 Maximum Value 01:58:38.274560
 Average of NON-ZERO Values 01:32:02.951119

 -- End of Results for Lewis Hamilton ---

 Race Finish Times for Valtteri Bottas
 --

 == Totals for Valtteri Bottas (21 Items) 28:56:54.387712
 Maximum Value 01:58:39.785984
 Average of NON-ZERO Values 01:31:24.967774

 -- End of Results for Valtteri Bottas ---
 ================
 ==== Grand Totals (42 Items) 61:09:56.361216
 ================

Basic Reporting Summary Reports

2024/09/02 11:04:59 FileKit REPORT Utility 44

Summary Report - Example 3.

Report Output:

See Insert Breaks, example 3.

12020/05/22 12:49 PAGE 1
 SMF Record Type 30-4 (Step Termination) Statistics
 First Jobname: JGE Terminating at: 2019/02/13 09:47:00.38

 Program CPU Connect Control I/O
 Reader Timestamp Job Name Step# name CC Time EXCPs Time Unit Time Starts
 ---------------------- -------- ----- -------- --- -------- ------ --------- --------- ------
 -------- ------ --------- --------- ------
 == Totals for JGE (4 Items) 20:25.02 963540 25.390080 04.630400 671484
 Maximum Value 08:49.80 432414 12.649088 02.514816 336998
 Average of NON-ZERO Values 05:06.26 240885 06.347520 01.157600 167871
 Minimum of NON-ZERO Values 02:07.19 63145 01.526784 00.150784 22593
 -------- ------ --------- --------- ------
 == Totals for JGE2 (1 Items) 01:16.29 53900 02.133760 00.375424 50097
 Maximum Value 01:16.29 53900 02.133760 00.375424 50097
 Average of NON-ZERO Values 01:16.29 53900 02.133760 00.375424 50097
 Minimum of NON-ZERO Values 01:16.29 53900 02.133760 00.375424 50097
 -------- ------ --------- --------- ------
 == Totals for SDEFFOB1 (4 Items) 00:00.73 902 00.015744 00.004224 445
 Maximum Value 00:00.24 307 00.005376 00.001536 157
 Average of NON-ZERO Values 00:00.18 226 00.003936 00.001056 111
 Minimum of NON-ZERO Values 00:00.13 149 00.002304 00.000256 65
 -------- ------ --------- --------- ------
 == Totals for SDEFFSU0 (1 Items) 00:02.19 2917 00.025216 00.003072 283
 Maximum Value 00:02.19 2917 00.025216 00.003072 283
 Average of NON-ZERO Values 00:02.19 2917 00.025216 00.003072 283
 Minimum of NON-ZERO Values 00:02.19 2917 00.025216 00.003072 283
 -------- ------ --------- --------- ------
 == Totals for SDEFFSU2 (1 Items) 00:02.47 3459 00.062336 00.002304 314
 Maximum Value 00:02.47 3459 00.062336 00.002304 314
 Average of NON-ZERO Values 00:02.47 3459 00.062336 00.002304 314
 Minimum of NON-ZERO Values 00:02.47 3459 00.062336 00.002304 314
 -------- ------ --------- --------- ------
 == Totals for SDEFFSU3 (3 Items) 00:06.64 8675 00.167040 00.006784 822
 Maximum Value 00:02.40 2909 00.118656 00.002816 279
 Average of NON-ZERO Values 00:02.21 2892 00.055680 00.002261 274
 Minimum of NON-ZERO Values 00:01.94 2882 00.023936 00.001920 265
 -------- ------ --------- --------- ------
 == Totals for SDEFRPO1 (1 Items) 00:02.79 3911 00.044160 00.004608 404
 Maximum Value 00:02.79 3911 00.044160 00.004608 404
 Average of NON-ZERO Values 00:02.79 3911 00.044160 00.004608 404
 Minimum of NON-ZERO Values 00:02.79 3911 00.044160 00.004608 404
 -------- ------ --------- --------- ------
 == Totals for SDELMAIN (1 Items) 00:00.30 259 00.019840 00.000384 71
 Maximum Value 00:00.30 259 00.019840 00.000384 71
 Average of NON-ZERO Values 00:00.30 259 00.019840 00.000384 71
 Minimum of NON-ZERO Values 00:00.30 259 00.019840 00.000384 71
 ======== ====== ========= ========= ======
 ==== Grand Totals (16 Items) 21:56.43 >1037K 27.858176 05.027200 723920
 ======== ====== ========= ========= ======

 Last Jobname: SDELMAIN Terminating at: 2019/02/13 15:33:03.50

Basic Reporting Summary Report - Example 3.

2024/09/02 11:04:59 FileKit REPORT Utility 45

CSV Output

In addition to generating a printable report, the REPORT utility can generate Comma Separated Variable (CSV) output from
the COLUMNS: section field values, in a format suitable for import to databases and spreadsheets.

The first CSV output line will be the specified (or default) column header names for each column. All subsequent output
lines are the report detail lines containing the prevailing value for each column field.

Page and report break header and footer line definitions are applicable only to printable report output and so are ignored for
CSV output.

CSV output is triggered when "CSV" is selected as the output type in one of the REPORT Utility panels, or is specified as an
operand on the REPORT command.

Examples

CSV Report - Example 1.

Selecting output type CSV for the first report definition described in example 1. for Insert Breaks produces CSV report
output as follows:

"Album","Track#","Track Name","Artist","Time (1/1000 sec)"
"Feel "," 11","Flow ","Roachford "," 281054"
"Feel "," 10","Time ","Roachford "," 452417"
"Feel "," 9","Testify ","Roachford "," 217292"
"Feel "," 8","Down ","Roachford "," 244645"
"Feel "," 7","Move On ","Roachford "," 267818"
"Feel "," 6","Nothing Free ","Roachford "," 269026"
"Feel "," 5","Naked Without You ","Roachford "," 209536"
"Feel "," 4","Someday ","Roachford "," 210326"
"Feel "," 3","Don't Make Me Love You ","Roachford "," 232710"
"Feel "," 2","How Could I? (Insecurity) ","Roachford "," 224769"
"Feel "," 1","Way I Feel ","Roachford "," 226023"
"Feels Like Today "," 12","Skin (Sarabeth) ","Rascal Flatts "," 261280"
"Feels Like Today "," 11","Oklahoma-Texas Line ","Rascal Flatts "," 175013"
"Feels Like Today "," 10","Holes ","Rascal Flatts "," 258933"
"Feels Like Today "," 9","Break Away ","Rascal Flatts "," 191680"
"Feels Like Today "," 8","The Day Before You ","Rascal Flatts "," 246440"
"Feels Like Today "," 7","Here's to You ","Rascal Flatts "," 217840"
"Feels Like Today "," 6","When the Sand Runs Out ","Rascal Flatts "," 226506"
"Feels Like Today "," 5","Fast Cars and Freedom ","Rascal Flatts "," 263053"
"Feels Like Today "," 4","Feels Like Today ","Rascal Flatts "," 201640"
"Feels Like Today "," 3","Then I Did ","Rascal Flatts "," 192586"
"Feels Like Today "," 2","Bless the Broken Road ","Rascal Flatts "," 227186"
"Feels Like Today "," 1","Where You Are ","Rascal Flatts "," 232933"

CSV Report - Example 2.

By default, literal strings (constants) specified in the COLUMNS section are omitted from CSV output. Furthermore, all
values are placed in quotation marks (") and, to align the values within output lines, all values are padded with blanks to the
defined width of the display field.

The format of this CSV output can be tweaked by specifying one or more of the following Boolean options in the report
definition.

OPTIONS: CSVLITERALS(YES) CSVQUOTED(NO) CSVSTRIPALL(YES)•

CSVLITERALS(YES) will include string literals in the output, CSVQUOTED(NO) will suppress inserting values in quotation
marks unless it is necessary to do so, and CSVSTRIPALL(YES) will prevent padding field values with blanks.

Adding these 3 options to the report definition in example 1. will produce the following CSV Output:

Basic Reporting CSV Output

2024/09/02 11:04:59 FileKit REPORT Utility 46

Album,Track#,Track Name,Artist,Time (1/1000 sec)
Feel,11,Flow,Roachford,281054
Feel,10,Time,Roachford,452417
Feel,9,Testify,Roachford,217292
Feel,8,Down,Roachford,244645
Feel,7,Move On,Roachford,267818
Feel,6,Nothing Free,Roachford,269026
Feel,5,Naked Without You,Roachford,209536
Feel,4,Someday,Roachford,210326
Feel,3,Don't Make Me Love You,Roachford,232710
Feel,2,How Could I? (Insecurity),Roachford,224769
Feel,1,Way I Feel,Roachford,226023
Feels Like Today,12,Skin (Sarabeth),Rascal Flatts,261280
Feels Like Today,11,Oklahoma-Texas Line,Rascal Flatts,175013
Feels Like Today,10,Holes,Rascal Flatts,258933
Feels Like Today,9,Break Away,Rascal Flatts,191680
Feels Like Today,8,The Day Before You,Rascal Flatts,246440
Feels Like Today,7,Here's to You,Rascal Flatts,217840
Feels Like Today,6,When the Sand Runs Out,Rascal Flatts,226506
Feels Like Today,5,Fast Cars and Freedom,Rascal Flatts,263053
Feels Like Today,4,Feels Like Today,Rascal Flatts,201640
Feels Like Today,3,Then I Did,Rascal Flatts,192586
Feels Like Today,2,Bless the Broken Road,Rascal Flatts,227186
Feels Like Today,1,Where You Are,Rascal Flatts,232933

Basic Reporting CSV Report - Example 2.

2024/09/02 11:04:59 FileKit REPORT Utility 47

JSON Output

The REPORT utility can also generate JavaScript Object Notation (JSON) from the COLUMNS: section field values.

The JSON output will be a single JSON Object literal (enclosed in braces "{}").

Each output report detail line generates a JSON object literal containing a number of comma separated key:value pairs
where each "key" corresponds to the column field column header string, and "value" is the prevailing column field value.

If option JSONARRAY(YES) is set, the JSON output object literal will comprise a single key:value pair where "key" is
"FileKit_Report" and "value" is a JSON array of the report detail line JSON objects.

If option JSONARRAY(NO) is set, the JSON output object literal will comprise multiple key:value pairs, one for each output
report detail line. In this case, the "key" is the output detail line sequence number (as described by built-in variable
#SEQUENCE) and "value" is the report detail line JSON object.

Page and report break header and footer line definitions are applicable only to printable report output and so are ignored for
JSON output.

JSON output is triggered when "JSON" is selected as the output type in one of the REPORT Utility panels, or is specified as
an operand on the REPORT command.

Examples

JSON Report - Example 1.

Selecting output type JSON and reducing the COLUMNS: field entries to "ALBUM", "TRACK-NUM" and "NAME" for the
first report definition described in example 1. for Insert Breaks, produces the following JSON report output. Note that option
JSONARRAY(NO) is default.

{

 "000000001" : {"Album" : "Feel ", "Track#" : " 11", "Track Name" : "Flow " }
 ,"000000002" : {"Album" : "Feel ", "Track#" : " 10", "Track Name" : "Time " }
 ,"000000003" : {"Album" : "Feel ", "Track#" : " 9", "Track Name" : "Testify " }
 ,"000000004" : {"Album" : "Feel ", "Track#" : " 8", "Track Name" : "Down " }
 ,"000000005" : {"Album" : "Feel ", "Track#" : " 7", "Track Name" : "Move On " }
 ,"000000006" : {"Album" : "Feel ", "Track#" : " 6", "Track Name" : "Nothing Free " }
 ,"000000007" : {"Album" : "Feel ", "Track#" : " 5", "Track Name" : "Naked Without You " }
 ,"000000008" : {"Album" : "Feel ", "Track#" : " 4", "Track Name" : "Someday " }
 ,"000000009" : {"Album" : "Feel ", "Track#" : " 3", "Track Name" : "Don't Make Me Love You " }
 ,"000000010" : {"Album" : "Feel ", "Track#" : " 2", "Track Name" : "How Could I? (Insecurity) " }
 ,"000000011" : {"Album" : "Feel ", "Track#" : " 1", "Track Name" : "Way I Feel " }
 ,"000000012" : {"Album" : "Feels Like Today ", "Track#" : " 12", "Track Name" : "Skin (Sarabeth) " }
 ,"000000013" : {"Album" : "Feels Like Today ", "Track#" : " 11", "Track Name" : "Oklahoma-Texas Line " }
 ,"000000014" : {"Album" : "Feels Like Today ", "Track#" : " 10", "Track Name" : "Holes " }
 ,"000000015" : {"Album" : "Feels Like Today ", "Track#" : " 9", "Track Name" : "Break Away " }
 ,"000000016" : {"Album" : "Feels Like Today ", "Track#" : " 8", "Track Name" : "The Day Before You " }
 ,"000000017" : {"Album" : "Feels Like Today ", "Track#" : " 7", "Track Name" : "Here's to You " }
 ,"000000018" : {"Album" : "Feels Like Today ", "Track#" : " 6", "Track Name" : "When the Sand Runs Out " }
 ,"000000019" : {"Album" : "Feels Like Today ", "Track#" : " 5", "Track Name" : "Fast Cars and Freedom " }
 ,"000000020" : {"Album" : "Feels Like Today ", "Track#" : " 4", "Track Name" : "Feels Like Today " }
 ,"000000021" : {"Album" : "Feels Like Today ", "Track#" : " 3", "Track Name" : "Then I Did " }
 ,"000000022" : {"Album" : "Feels Like Today ", "Track#" : " 2", "Track Name" : "Bless the Broken Road " }
 ,"000000023" : {"Album" : "Feels Like Today ", "Track#" : " 1", "Track Name" : "Where You Are " }

}

JSON Report - Example 2.

By default, JSON output is an object string comprising a key:value pair for each report detail line. This may be changed to
a single key:value pair where "value" is an array of object strings (one for each report detail line) by specifying the following
option in the report definition.

OPTIONS: JSONARRAY(YES)•

Adding this option to the report definition in example 1. will produce the following JSON Output:

Basic Reporting JSON Output

2024/09/02 11:04:59 FileKit REPORT Utility 48

{"FileKit_Report" :
 [
 "000000001" : {"Album" : "Feel ", "Track#" : " 11", "Track Name" : "Flow " }
 ,"000000002" : {"Album" : "Feel ", "Track#" : " 10", "Track Name" : "Time " }
 ,"000000003" : {"Album" : "Feel ", "Track#" : " 9", "Track Name" : "Testify " }
 ,"000000004" : {"Album" : "Feel ", "Track#" : " 8", "Track Name" : "Down " }
 ,"000000005" : {"Album" : "Feel ", "Track#" : " 7", "Track Name" : "Move On " }
 ,"000000006" : {"Album" : "Feel ", "Track#" : " 6", "Track Name" : "Nothing Free " }
 ,"000000007" : {"Album" : "Feel ", "Track#" : " 5", "Track Name" : "Naked Without You " }
 ,"000000008" : {"Album" : "Feel ", "Track#" : " 4", "Track Name" : "Someday " }
 ,"000000009" : {"Album" : "Feel ", "Track#" : " 3", "Track Name" : "Don't Make Me Love You " }
 ,"000000010" : {"Album" : "Feel ", "Track#" : " 2", "Track Name" : "How Could I? (Insecurity) " }
 ,"000000011" : {"Album" : "Feel ", "Track#" : " 1", "Track Name" : "Way I Feel " }
 ,"000000012" : {"Album" : "Feels Like Today ", "Track#" : " 12", "Track Name" : "Skin (Sarabeth) " }
 ,"000000013" : {"Album" : "Feels Like Today ", "Track#" : " 11", "Track Name" : "Oklahoma-Texas Line " }
 ,"000000014" : {"Album" : "Feels Like Today ", "Track#" : " 10", "Track Name" : "Holes " }
 ,"000000015" : {"Album" : "Feels Like Today ", "Track#" : " 9", "Track Name" : "Break Away " }
 ,"000000016" : {"Album" : "Feels Like Today ", "Track#" : " 8", "Track Name" : "The Day Before You " }
 ,"000000017" : {"Album" : "Feels Like Today ", "Track#" : " 7", "Track Name" : "Here's to You " }
 ,"000000018" : {"Album" : "Feels Like Today ", "Track#" : " 6", "Track Name" : "When the Sand Runs Out " }
 ,"000000019" : {"Album" : "Feels Like Today ", "Track#" : " 5", "Track Name" : "Fast Cars and Freedom " }
 ,"000000020" : {"Album" : "Feels Like Today ", "Track#" : " 4", "Track Name" : "Feels Like Today " }
 ,"000000021" : {"Album" : "Feels Like Today ", "Track#" : " 3", "Track Name" : "Then I Did " }
 ,"000000022" : {"Album" : "Feels Like Today ", "Track#" : " 2", "Track Name" : "Bless the Broken Road " }
 ,"000000023" : {"Album" : "Feels Like Today ", "Track#" : " 1", "Track Name" : "Where You Are " }
]
}

JSON Report - Example 3.

By default, literal strings (constants) specified in the COLUMNS section are omitted from JSON output. Furthermore, all
values are treated as strings and so placed in quotation marks (") and, to align the values within output lines, all values are
padded with blanks to the defined width of the display field.

The format of this JSON output can be tweaked by specifying one or more of the following Boolean options in the report
definition.

OPTIONS: JSONLITERALS(YES) JSONQUOTED(NO) JSONSTRIPALL(YES)•

JSONLITERALS(YES) will include string literals as key:value pairs in the detail line output, JSONQUOTED(NO) will insert
values in quotation marks only if the field data type is non-numeric, and JSONSTRIPALL(YES) will prevent padding field
values with blanks.

Adding these 3 options to the report definition in example 2. will produce the following JSON Output:

{"FileKit_Report" :
 [
 "000000001" : {"Album" : "Feel", "Track#" : 11, "Track Name" : "Flow" }
 ,"000000002" : {"Album" : "Feel", "Track#" : 10, "Track Name" : "Time" }
 ,"000000003" : {"Album" : "Feel", "Track#" : 9, "Track Name" : "Testify" }
 ,"000000004" : {"Album" : "Feel", "Track#" : 8, "Track Name" : "Down" }
 ,"000000005" : {"Album" : "Feel", "Track#" : 7, "Track Name" : "Move On" }
 ,"000000006" : {"Album" : "Feel", "Track#" : 6, "Track Name" : "Nothing Free" }
 ,"000000007" : {"Album" : "Feel", "Track#" : 5, "Track Name" : "Naked Without You" }
 ,"000000008" : {"Album" : "Feel", "Track#" : 4, "Track Name" : "Someday" }
 ,"000000009" : {"Album" : "Feel", "Track#" : 3, "Track Name" : "Don't Make Me Love You" }
 ,"000000010" : {"Album" : "Feel", "Track#" : 2, "Track Name" : "How Could I? (Insecurity)" }
 ,"000000011" : {"Album" : "Feel", "Track#" : 1, "Track Name" : "Way I Feel" }
 ,"000000012" : {"Album" : "Feels Like Today", "Track#" : 12, "Track Name" : "Skin (Sarabeth)" }
 ,"000000013" : {"Album" : "Feels Like Today", "Track#" : 11, "Track Name" : "Oklahoma-Texas Line" }
 ,"000000014" : {"Album" : "Feels Like Today", "Track#" : 10, "Track Name" : "Holes" }
 ,"000000015" : {"Album" : "Feels Like Today", "Track#" : 9, "Track Name" : "Break Away" }
 ,"000000016" : {"Album" : "Feels Like Today", "Track#" : 8, "Track Name" : "The Day Before You" }
 ,"000000017" : {"Album" : "Feels Like Today", "Track#" : 7, "Track Name" : "Here's to You" }
 ,"000000018" : {"Album" : "Feels Like Today", "Track#" : 6, "Track Name" : "When the Sand Runs Out" }
 ,"000000019" : {"Album" : "Feels Like Today", "Track#" : 5, "Track Name" : "Fast Cars and Freedom" }
 ,"000000020" : {"Album" : "Feels Like Today", "Track#" : 4, "Track Name" : "Feels Like Today" }
 ,"000000021" : {"Album" : "Feels Like Today", "Track#" : 3, "Track Name" : "Then I Did" }
 ,"000000022" : {"Album" : "Feels Like Today", "Track#" : 2, "Track Name" : "Bless the Broken Road" }
 ,"000000023" : {"Album" : "Feels Like Today", "Track#" : 1, "Track Name" : "Where You Are" }
]
}

JSON Report - Example 4.

By default, all key:value pairs belonging to the output report detail line are arranged on the same line of the JSON output,
resulting in long records. To break the output line so that all key:value pairs are arranged beneath each other on separate
output records, specify the following option in the report definition.

OPTIONS: JSONINDENT(YES)•

Adding this option to the report definition in example 3. will produce the following JSON Output:

Basic Reporting JSON Report - Example 2.

2024/09/02 11:04:59 FileKit REPORT Utility 49

{"FileKit_Report" :
 [
 {"Album" : "Feel",
 "Track#" : 11,
 "Track Name" : "Flow"
 }
 ,{"Album" : "Feel",
 "Track#" : 10,
 "Track Name" : "Time"
 }
 ,{"Album" : "Feel",
 "Track#" : 9,
 "Track Name" : "Testify"
 }
 ,{"Album" : "Feel",
 "Track#" : 8,
 "Track Name" : "Down"
 }
 ,{"Album" : "Feel",
 "Track#" : 7,
 "Track Name" : "Move On"
 }
 ,{"Album" : "Feel",
 "Track#" : 6,
 "Track Name" : "Nothing Free"
 }
 ,{"Album" : "Feel",
 "Track#" : 5,
 "Track Name" : "Naked Without You"
 }
 ,{"Album" : "Feel",
 "Track#" : 4,
 "Track Name" : "Someday"
 }
 ,{"Album" : "Feel",
 "Track#" : 3,
 "Track Name" : "Don't Make Me Love You"
 }
 ,{"Album" : "Feel",
 "Track#" : 2,
 "Track Name" : "How Could I? (Insecurity)"
 }
 ,{"Album" : "Feel",
 "Track#" : 1,
 "Track Name" : "Way I Feel"
 }
 ,{"Album" : "Feels Like Today",
 "Track#" : 12,
 "Track Name" : "Skin (Sarabeth)"
 }
 ,{"Album" : "Feels Like Today",
 "Track#" : 11,
 "Track Name" : "Oklahoma-Texas Line"
 }
 ,{"Album" : "Feels Like Today",
 "Track#" : 10,
 "Track Name" : "Holes"
 }
 ,{"Album" : "Feels Like Today",
 "Track#" : 9,
 "Track Name" : "Break Away"
 }
 ,{"Album" : "Feels Like Today",
 "Track#" : 8,
 "Track Name" : "The Day Before You"
 }
 ,{"Album" : "Feels Like Today",
 "Track#" : 7,
 "Track Name" : "Here's to You"
 }
 ,{"Album" : "Feels Like Today",
 "Track#" : 6,
 "Track Name" : "When the Sand Runs Out"
 }
 ,{"Album" : "Feels Like Today",
 "Track#" : 5,
 "Track Name" : "Fast Cars and Freedom"
 }
 ,{"Album" : "Feels Like Today",
 "Track#" : 4,
 "Track Name" : "Feels Like Today"
 }
 ,{"Album" : "Feels Like Today",
 "Track#" : 3,
 "Track Name" : "Then I Did"
 }
 ,{"Album" : "Feels Like Today",
 "Track#" : 2,
 "Track Name" : "Bless the Broken Road"
 }
 ,{"Album" : "Feels Like Today",
 "Track#" : 1,
 "Track Name" : "Where You Are"
 }
]
}

Basic Reporting JSON Report - Example 4.

2024/09/02 11:04:59 FileKit REPORT Utility 50

XML Output

The REPORT utility can also generate Extensible Markup Language (XML) from the COLUMNS: section field values.

The XML output will contain a "FileKit_Report" element with open/close tags for each output report detail line. These report
detail line elements are child elements of a single element, "INPUT".

An XML open and close tag is generated for each field value in the output report detail line. These field tags have a name
equal to the defined column field header, and are child elements of the "FileKit_Report" element.

Page and report break header and footer line definitions are applicable only to printable report output and so are ignored for
XML output.

XML output is triggered when "XML" is selected as the output type in one of the REPORT Utility panels, or is specified as an
operand on the REPORT command.

Examples

XML Report - Example 1.

Selecting output type XML and reducing the COLUMNS: field entries to "TRACK-NUM" and "NAME" for the first report
definition described in example 1. for Insert Breaks, produces the following XML report output.

Note that special characters are represented by their "&" code name in the XML output. In the following output,
occurrences of apostrophe (') within the field values are replaced with "'".

<?xml version="1.0"?>

<INPUT>
 <FileKit_Report> <Track_> 11</Track_> <Track_Name>Flow </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 10</Track_> <Track_Name>Time </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 9</Track_> <Track_Name>Testify </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 8</Track_> <Track_Name>Down </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 7</Track_> <Track_Name>Move On </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 6</Track_> <Track_Name>Nothing Free </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 5</Track_> <Track_Name>Naked Without You </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 4</Track_> <Track_Name>Someday </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 3</Track_> <Track_Name>Don't Make Me Love You </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 2</Track_> <Track_Name>How Could I? (Insecurity) </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 1</Track_> <Track_Name>Way I Feel </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 12</Track_> <Track_Name>Skin (Sarabeth) </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 11</Track_> <Track_Name>Oklahoma-Texas Line </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 10</Track_> <Track_Name>Holes </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 9</Track_> <Track_Name>Break Away </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 8</Track_> <Track_Name>The Day Before You </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 7</Track_> <Track_Name>Here's to You </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 6</Track_> <Track_Name>When the Sand Runs Out </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 5</Track_> <Track_Name>Fast Cars and Freedom </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 4</Track_> <Track_Name>Feels Like Today </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 3</Track_> <Track_Name>Then I Did </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 2</Track_> <Track_Name>Bless the Broken Road </Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_> 1</Track_> <Track_Name>Where You Are </Track_Name> </FileKit_Report>

</INPUT>

XML Report - Example 2.

By default, literal strings (constants) specified in the COLUMNS section are omitted from XML output and, in order to align
the values within output lines, all values are padded with blanks to the defined width of the display field.

The format of this XML output can be tweaked by specifying one or more of the following Boolean options in the report
definition.

OPTIONS: XMLLITERALS(YES) XMLSTRIPALL(YES)•

XMLLITERALS(YES) will include string literals in the report detail line output, and XMLSTRIPALL(YES) will prevent
padding field values with blanks.

Adding these 2 options to the report definition in example 1. will produce the following XML Output:

Basic Reporting XML Output

2024/09/02 11:04:59 FileKit REPORT Utility 51

<?xml version="1.0"?>

<INPUT>
 <FileKit_Report> <Track_>11</Track_> <Track_Name>Flow</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>10</Track_> <Track_Name>Time</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>9</Track_> <Track_Name>Testify</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>8</Track_> <Track_Name>Down</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>7</Track_> <Track_Name>Move On</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>6</Track_> <Track_Name>Nothing Free</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>5</Track_> <Track_Name>Naked Without You</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>4</Track_> <Track_Name>Someday</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>3</Track_> <Track_Name>Don't Make Me Love You</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>2</Track_> <Track_Name>How Could I? (Insecurity)</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>1</Track_> <Track_Name>Way I Feel</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>12</Track_> <Track_Name>Skin (Sarabeth)</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>11</Track_> <Track_Name>Oklahoma-Texas Line</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>10</Track_> <Track_Name>Holes</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>9</Track_> <Track_Name>Break Away</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>8</Track_> <Track_Name>The Day Before You</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>7</Track_> <Track_Name>Here's to You</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>6</Track_> <Track_Name>When the Sand Runs Out</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>5</Track_> <Track_Name>Fast Cars and Freedom</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>4</Track_> <Track_Name>Feels Like Today</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>3</Track_> <Track_Name>Then I Did</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>2</Track_> <Track_Name>Bless the Broken Road</Track_Name> </FileKit_Report>
 <FileKit_Report> <Track_>1</Track_> <Track_Name>Where You Are</Track_Name> </FileKit_Report>

</INPUT>

XML Report - Example 3.

By default, all XML elements belonging to the output report detail line are arranged on the same line of the XML output,
resulting in long records. To break the output line so that all elements are arranged beneath each other on separate output
records, specify the following option in the report definition.

OPTIONS: XMLINDENT(YES)•

Adding this option to the report definition in example 2. will produce the following XML Output:

Basic Reporting XML Report - Example 2.

2024/09/02 11:04:59 FileKit REPORT Utility 52

<?xml version="1.0"?>
<INPUT>
 <FileKit_Report>
 <Track_>11</Track_>
 <Track_Name>Flow</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>10</Track_>
 <Track_Name>Time</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>9</Track_>
 <Track_Name>Testify</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>8</Track_>
 <Track_Name>Down</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>7</Track_>
 <Track_Name>Move On</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>6</Track_>
 <Track_Name>Nothing Free</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>5</Track_>
 <Track_Name>Naked Without You</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>4</Track_>
 <Track_Name>Someday</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>3</Track_>
 <Track_Name>Don't Make Me Love You</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>2</Track_>
 <Track_Name>How Could I? (Insecurity)</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>1</Track_>
 <Track_Name>Way I Feel</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>12</Track_>
 <Track_Name>Skin (Sarabeth)</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>11</Track_>
 <Track_Name>Oklahoma-Texas Line</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>10</Track_>
 <Track_Name>Holes</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>9</Track_>
 <Track_Name>Break Away</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>8</Track_>
 <Track_Name>The Day Before You</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>7</Track_>
 <Track_Name>Here's to You</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>6</Track_>
 <Track_Name>When the Sand Runs Out</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>5</Track_>
 <Track_Name>Fast Cars and Freedom</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>4</Track_>
 <Track_Name>Feels Like Today</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>3</Track_>
 <Track_Name>Then I Did</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>2</Track_>
 <Track_Name>Bless the Broken Road</Track_Name>
 </FileKit_Report>
 <FileKit_Report>
 <Track_>1</Track_>
 <Track_Name>Where You Are</Track_Name>
 </FileKit_Report>
</INPUT>

Basic Reporting XML Report - Example 3.

2024/09/02 11:04:59 FileKit REPORT Utility 53

BROWSE Output

When executed within the FileKit on-line environment (i.e. not in batch via FILEKITB), the REPORT utility can be used to
open a Data Editor BROWSE view to display the formatted input records.

Only records or record segments with record-types matching those specified in the report definition, will be displayed.
Furthermore, only input-fields whose names are referenced in the record definition will be selected for display.

For SMF or SDE segmented record input, only primary segment record-types and secondary segment record-types
specified in a REPEAT: section will be displayed. Fields that are referenced in the report definition but belong to secondary
segment record-types that are not specified in REPEAT, will be selected on the primary segment display. Option
SELECTJOIN(NO) may be used to include segmants of all record-types specified in the report definition and so display
selected fields in the segment to which they belong.

All record filtering criteria specified via the report definition or as parameters on the execution, will be applied to the input
before records are displayed.

Page and report break header and footer line definitions are applicable only to printable report output and so are ignored for
BROWSE output.

BROWSE output is triggered when "BROWSE" is selected as the output type in one of the REPORT Utility panels, or is
specified as an operand on the REPORT command.

Examples

BROWSE Output - Example 1.

Selecting output type BROWSE for the first report definition described in example 1. for Filter Input Records, produces the
following BROWSE display.

Figure 9. Browse SMF Type 14 records - Dataset Usage by Job Name

BROWSE Output - Example 2.

Add the following option to the report definition in example 1. to prevent joining fields from secondary segments to the
primary segment display.

OPTIONS: SELECTJOIN(NO)•

Repeating the execution with output type BROWSE produces the following BROWSE display.

Basic Reporting BROWSE Output

2024/09/02 11:04:59 FileKit REPORT Utility 54

Figure 10. Browse SMF Type 14 records without SELECTJOIN - Dataset Usage by Job Name

Basic Reporting BROWSE Output - Example 2.

2024/09/02 11:04:59 FileKit REPORT Utility 55

REPORT Execution

This chapter details the methods that may be used to start the REPORT utility.

Record Input

The REPORT utility may process dataset record or DB2 table input using either of the following FileKit I/O methods:

FILEIO•
Data Editor Browse•

The FILEIO method is slightly more efficient, and uses the appropriate access method to input records sequentially. This is
the default method adopted by the REPORT utility.

Data Editor Browse also inputs records sequentially but performs additional processing to allow scrolling forwards and
backwards through the input records. This has the benefit of supporting a level of record pre-processing and exclusion
before the main REPORT processing is performed. This method is triggered when input is the display of formatted records
in the current FileKit Data Editor view, or if the BROWSE-EXIT section is present in the report definition.

The input method is of no real consequence to the user, but is mentioned here in order to explain the difference between
use of the INIT-EXIT and BROWSE-EXIT sections in the report definition.

The following screen shot demonstrates execution of the REPORT utility to process records in the current Data Edit view
using the report definition member, ZZSRF0R1. Input records will be processed using the Data Editor Browse method.

The Data Edit view displays browsed records from the sample "SZZSDIST.SAM2(ZZSDF1RE)" Formula 1 2019 results
member, mapped using the "SZZSDIST.SDO(ZZSSF1RE)" structure. All records showing race positions outside the top 5
have been excluded and so will also be excluded from REPORT input processing.

Figure 11. REPORT Data Editor Browse Processing for data in the current view.

2024/09/02 11:04:59 FileKit REPORT Utility 56

Record Filtering

In some cases, it may not be desirable to include all input records or DB2 table rows in the output report. For this reason,
the REPORT utility supports methods by which input records may be filtered before they are processed and included in the
generated report output.

Record Filtering for SDE Record Input

Structure Data Edit (SDE) record input applies to any input from a data set source which does not contain SMF generated
records. SDE record input relies on an accompanying structure to map fields within the record data. The structure may be a
specific copybook or one generated by field mappings specified in the MAP section of the report definition.

SDE data set records may be filtered using the following:

Input Record Limit
An input limit may be specified using the ILIM report option, REPORT command ILIM operand or the REPORT
Utility panels "Input Limit" field.

If specified, an input limit is applied before all other SDE data set record filtering occurs. Therefore, no record
selection will occur for input records beyond the input limit record number.

FILTER Clause
A FILTER clause may be specified via the FILTER section of the report definition.

A FILTER clause includes one or more expressions, each comprising formatted record field names, operators,
functions and/or constants. When applied to the (formatted or unformatted) input record data, the expressions
return either a true (1) or false (0) result. This Boolean result determines whether the record is rejected or accepted
and passed for further REPORT processing.

Unformatted Record Find String Matching
Find String(s) may be specified using the FIND report option, the REPORT command FIND operand or the
REPORT Utility panels "Find String" field.

One or more comma separated Find Strings may be specified in a format described by search values under
"Record Filtering". If a match on any of the Find Strings is located at any position within the unformatted input
record, then a true result (1) is returned and the record is passed for further REPORT processing.

Note that FILTER Clause and Unformatted Record Find String Matching are mutually exclusive record filtering techniques. If
an attempt is made to use both techniques simultaneously, then error ZZSR065E is returned and execution of the REPORT
utility is halted.

See "SDE Dataset Processing" in "Appendix D. REPORT Logic Flow" for an illustrated view of SDE record selection logic.

Record Filtering for SMF Record Input

IBM z/OS System Management Facilities (SMF) record input applies to input from a data set source which contains SMF
generated records. The REPORT utility uses FileKit SMF record structures to map fields in the SMF records.

SMF data set records may be filtered using the following:

Input Record Limit
An input limit may be specified using the ILIM report option, REPORT command ILIM operand or the REPORT
Utility panels "Input Limit" field.

If specified, an input limit is applied before all other SMF data set record filtering occurs. Therefore, no record
selection will occur for input records beyond the input limit record number.

Low Date/High Date Timestamp
Every SMF generated record conatins a header that includes the date and time at which the record was written to
the output buffer. With the exception of SMF type 2 (Dump Header) records, SMF dump data set records occur in
ascending order of SMF record timestamp. Note that an SMF type 2 and type 3 record are usually the first and last
records in an SMF dump data set and have a timestamp equal to the time and date the data set was created.

A low and/or high timestamp value may be specified to select only SMF records that were written on or later than a
lower limit date and time, or written on or earlier than a higher limit date and time.

A low date limit may be specified using the SMFDATELO report option, the REPORT command DATELO operand
or the SMF REPORT Utility panel "Lo-Date/Time" field. A high date limit may be specified using the SMFDATEHI
report option, the REPORT command DATEHI operand or the SMF REPORT Utility panel "Hi-Date/Time" field.

REPORT Execution Record Filtering

2024/09/02 11:04:59 FileKit REPORT Utility 57

A low date and/or high date may be specified as an absolute date and time or as a date relative to the current date
as described by Timestamp Values under "Record Filtering".

If the SMF record timestamp is before the low date threshold, then the record is rejected. Once an input record has
been processed which has a timestamp not before the low date threshold and is not of SMF type 2 or type 3, then
all subsequent input records are assumed to have a timestamp later than the low date threshold, so automatically
pass low date testing.

Once low date processing is passed, record timestamps are tested against the high date threshold (if specified). If
the timestamp value is later than the high date threshold, then no further input record processing will occur.

Low Date/High Date timestamp record filtering will occur before Filter Clause or Content Match Criteria
processing.

FILTER Clause
A FILTER clause may be specified via the FILTER section of the report definition.

A FILTER clause includes one or more expressions, each comprising formatted record field names, operators,
functions and/or constants. When applied to the (formatted or unformatted) SMF input record data, the expressions
return either a true (1) or false (0) result. This Boolean result determines whether the record is rejected or accepted
and passed for further REPORT processing.

Content Match Criteria
Content Match Criteria is comprised of one or more of the following field matching elements which each return
either a true (1) or false (0) Boolean result:

Unformatted Record Find String matching (FIND)◊
SMF Record Job Name matching (JOBNAME)◊
SMF Record System Id matching (SID)◊
SMF Record Type matching (TYPES)◊
SMF Record User Name matching (USERID)◊

A logical ("AND" or "OR") operation is performed between each of the Boolean results to return a final true or false
result for all the Content Match Criteria.

The logical operation used to determine the Content Match Criteria result is specified by the SMFLOGIC report
option, the REPORT command LOGIC operand or the SMF REPORT Utility panel "Logic" field. If no specified, the
default operation is "OR".

Therefore, the result of Content Match Criteria is true (1) if either:

Logical operation AND is used and the result returned by all of the specified field matching elements is
true (1).

1.

If logical operation OR is used and at least one of the results returned by the specified field matching
elements is true (1).

2.

If a true result is returned by the Content Match Criteria, then the SMF record is passed for further REPORT
generation processing.

Unformatted Record Find String Matching
Find String(s) may be specified using the FIND report option, the REPORT command FIND operand or
the REPORT Utility panels "Find String" field.

One or more comma separated Find Strings may be specified in a format described by search values
under "Record Filtering". If a match on any of the Find Strings is located at any position within the
unformatted input record, then a true result (1) is returned.

SMF Record Job Name Matching
A number of SMF record types contain a job name field zJobName at a fixed location within the record
data. This fixed position may be different for each of the SMF record types. SMF records containing this
field may be tested for a matching job name masks.

One or more comma separated job name masks may be specified using the SMFJOBNAME report
option, the REPORT command JOBNAME operand or the SMF REPORT Utility panel "Job Name" field.
Each job name mask is in a format described by search values under "Record Filtering".

If an SMF record zJobName field contains a match on any of the supplied job name masks, then SMF
Record Job Name matching will return a true result (1). Otherwise, if no match is found for any of the
supplied job name masks or the SMF record does not contain a zJobName field, then a false result (0) is
returned.

The following SMF records types contain a zJobName field:

004
005
006

010
014
015

017
018
020

025
026
030

034
035
036

040
042
060

061
062
063

064
065
066

067
068
069

080
110
118

REPORT Execution Record Filtering for SMF Record Input

2024/09/02 11:04:59 FileKit REPORT Utility 58

SMF Record System Id Matching
All SMF record types contain a system identifier field zSID in the record header. This field may be used to
test all SMF records for a matching system identifier mask.

One or more comma separated system identifier masks may be specified using the SMFSID report
option, the REPORT command SID operand or the SMF REPORT Utility panel "System Id" field. Each
system identifier mask is in a format described by search values under "Record Filtering".

If an SMF record zSID field contains a match on any of the supplied system identifier masks, then SMF
Record System Id matching will return a true result (1). Otherwise, if no match is found for any of the
supplied system identifier masks, then a false result (0) is returned.

SMF Record Type Matching
All SMF record types contain an SMF record type field zRTY and some also contain a sub-type field zSTY
in the record header. These fields may be used to test all SMF records for a matching type and optionally,
a matching sub-type.

One or more comma separated record type, record sub-type and/or record type range may be specified
using the SMFTYPES report option, the REPORT command TYPES operand or the SMF REPORT Utility
panel "Types" field. Each record type, record sub-type and/or record type range is in a format described
by SMF Type Values under "Record Filtering".

If an SMF record contains a match on any of the supplied SMF record types, sub-types or record type
ranges, then SMF Record Type matching will return a true result (1). Otherwise, a false result (0) is
returned.

SMF Record User Name Matching
A number of SMF record types contain a user name field zUserId at a fixed location within the record
data. This fixed position may be different for each of the SMF record types. SMF records containing this
field may be tested for a matching user name masks.

One or more comma separated job name masks may be specified using the SMFUSERID report option,
the REPORT command USERID operand or the SMF REPORT Utility panel "User Name" field. Each user
name mask is in a format described by search values under "Record Filtering".

If an SMF record zUserId field contains a match on any of the supplied user name masks, then SMF
Record User Name matching will return a true result (1). Otherwise, if no match is found for any of the
supplied user name masks or the SMF record does not contain a zUserId field, then a false result (0) is
returned.

The following SMF records types contain a zUserId field:

004
005
006
010

014
015
017
018

020
025
026

030
032
034

035
036
040

042
060
061

062
063
064

065
066
067

068
069
080

110
118
119

Note that FILTER Clause and Content Match Criteria are mutually exclusive record filtering techniques. If an attempt is
made to use both techniques simiultaneously, then error ZZSR066E is returned and execution of the REPORT utility is
halted.

See "SMF Records Dataset Processing" in "Appendix D. REPORT Logic Flow" for an illustrated view of SMF record
selection logic.

Record Filtering for DB2 Table Input

DB2 table input applies to input from an IBM DB2 database table source. This is achieved by submitting a generated, or
explicitly specified, DB2 SQL Query to the target DB2 sub-system in order to obtain a result table together with a description
of its columns.

The column descriptions are used to generate a temporary structure with which the table row data is mapped.

DB2 table rows may be filtered using the following:

Input Row Limit
An input limit may be specified using the ILIM report option, REPORT command ILIM operand or the DB2
REPORT Utility panels "Max" field.

Alternatively, the DB2 result table definition operands specified via the report definition INPUT section or
DB2-INPUT operands of the REPORT command, may include a FOR ROWS specification. Note that, if both an
ILIM input limit and a FOR ROWS value is specified, then the FOR ROWS value is silently ignored.

If specified, an input limit value is included as a FETCH FIRST nrows clause in the SQL Query used to generate
the DB2 result table. A FETCH FIRST clause will return the first nrows number of rows of the result table after any
WHERE search-clause has been applied. This is different to data set record reporting where the input limit is

REPORT Execution Record Filtering for DB2 Table Input

2024/09/02 11:04:59 FileKit REPORT Utility 59

applied before all other record filtering.

DB2 result table operands also support a FROM ROW specification in the the report definition INPUT section or
REPORT command DB2-INPUT operands. If an input limit is used, then FROM ROW rownum will add a value
rownum-1 to the FETCH FIRST nrows value generated for the input limit specification. Therefater, the first
rownum-1 rows of the DB2 result table will be rejected. For example, FROM ROW 101 FOR 10 ROWS will fetch
110 rows into the result table and select only 10 starting at row number 101.

FILTER Clause
A FILTER clause may be specified via the FILTER section of the report definition.

For DB2 format DB2 table or view row input, the FILTER section specifies a DB2 SQL query WHERE
search-condition.

Alternatively, the DB2 result table definition operands specified via the report definition INPUT section, DB2-INPUT
operands of the REPORT command or the DB2 REPORT Utility WHERE Clause panel, may provide a WHERE
clause specification. Note that, if both a FILTER and WHERE clause specification exists, then processing
continues but the FILTER is ignored and warning ZZSR064W (RC=4) is returned.

See "DB2 Result Table Processing" in "Appendix D. REPORT Logic Flow" for an illustrated view of DB2 row selection logic.

Search Values

REPORT utility content match filtering parameter FIND and, for SMF record input, parameters SID, JOBNAME and
USERID, each support one or more alternate search string values.

A search string value entered for any of these parameters may be of one of the following formats:

Unquoted String
A string of characters without enclosing quotation mark (") or apostrophe (') symbols.

The string may contain any character other than a blank or a comma (","). Furthermore, it must not be one of the
keyword operands supported by the Data Editor primary command "FIND" (e.g. PREV, NEXT, CHAR, WORD,
etc.)

Since text in the SMF System ID, Job Name and User ID fields is in upper-case, the alpha characters in unquoted
SID, JOBNAME and USERID search strings are always upper-cased before testing occurs.

When testing an unquoted search string against the record data, matching of alpha characters is case-insensitive.
The only exception to this rule is when the search string includes a wildcard symbol. In this case, matching of alpha
characters in the search string will be case sensitive. Because alpha characters in SID, JOBNAME and USERID
parameter search strings are upper-cased, this only really effects FIND search strings.

For example, search strings ABC and abc are equivalent. However, for the FIND parameter only, the search
strings AB* and ab* are not equivalent.

Quoted String
A string of characters enclosed within either quotation mark (") symbols or apostrophe (') symbols.

The string may contain any character but if it includes the same symbol that is used to enclose the string, then
each occurrence of that symbol within the string must be escaped. The escaping symbol is identical to the escaped
symbol itself. Therfore, each occurrence of the symbol within the string is represented by 2 occurrences of that
symbol. For example, using apostrophes to enclose the string, 'It''s Peter O''Toole''s car.' is
equivalent to "It's Peter O'Toole's car." .

Like Unquoted strings, alpha characters in SID, JOBNAME and USERID quoted strings are automatically
upper-cased before testing occurs and testing on alpha characters is case-insensitive unless the string contains a
wildcard symbol.

For example, search strings 'A,B C' and "a,b C" are equivalent. However, for the FIND parameter only,
the search strings 'A,%B*' and 'a,%B*' are not equivalent.

Character Literal
A string of characters enclosed within either quotation mark (") symbols or apostrophe (') symbols and prefixed with
the letter "C" or "c".

Unlike Unquoted and Quoted strings, no upper-casing of alpha characters is performed for SID, JOBNAME and
USERID search strings and alpha character matching is always case-sensitive. However, character literals may
include wildcard symbols.

For example, C'A,B C' and C'a,b C' are not equivalent.

Hexadecimal Literal
A string containing an even number of hexadecimal digits (0-F) enclosed within either quotation mark (") symbols
or apostrophe (') symbols and prefixed with the letter "X" or "x".

REPORT Execution Search Values

2024/09/02 11:04:59 FileKit REPORT Utility 60

A hexadecimal string is tested byte for byte against the hexadecimal representation of data in the input record.
Wildcard symbols are not supported in hexadecimal literals.

For example, X'81C2C340'.

Picture String
A string of characters enclosed within either quotation mark (") symbols or apostrophe (') symbols and prefixed with
the letter "P" or "p".

Picture strings are identical to character literals except that certain special character symbols within the string
represent a generic group of characters as described below:

Symbol Generic Group
P'=' Any character.
P'¬' Any non-blank character.
P'.' Any non-displayable character.
P'#' Any numeric character, 0-9.
P'-' Any non-numeric character.
P'@' Any uppercase or lowercase alpha character.
P'<' Any lowercase alpha character.
P'>' Any uppercase alpha character.
P'$' Any non-alphanumeric special character.

Like Character literals, no upper-casing of alpha characters is performed for SID, JOBNAME and USERID search
strings and alpha character matching is always case-sensitive. However, wildcard symbols are not supported in
picture strings.

For example, P'A##-BC' would match A21XBC, A01vBC and A99*BC but not A2SXBC, A012BC or Ap9*BC.

Regular Expression
A string of characters enclosed within either quotation mark (") symbols or apostrophe (') symbols and prefixed with
the letter "R" or "r".

A regular expression provides powerful string pattern matching at the cost of rather complex syntax and potentially
extended command processing time. Regular expressions are discussed in detail in the "FileKit Text Editor"
publication.

Regular expression string pattern matching is precise and therefore case sensitivity and use of wildcard symbols is
not applicable.

For example, R'A:d+x' would match the upper case character "A" followed by 1 or more numeric digits followed
by character "x".

Wildcard Symbols

One or more wildcard symbols may be used in Unquoted, Quoted and Character Literal search strings.

Two wildcard symbols are supported as follows:

Symbol Description
%
(percent)

Represents exactly one character.
For SID, JOBNAME and USERID search strings, this character may be any non-blank character.
For FIND search strings, it may be any character (x'00'-x'FF').

* (asterisk) Represents zero or more characters.
For SID, JOBNAME and USERID search strings, these character may be any non-blank character.
For FIND search strings, they may be any character (x'00'-x'FF').

Beware that use of wildcard symbols in unquoted and quoted strings forces alpha character matching to become
case-sensitive.

Use of the asterisk ("*") wildcard symbol in a FIND search string may result in unintentional matches. Once a match has
been found for characters preceding the "*" symbol, the characters that follow may be matched at any subsequent location
within the record. For example, if the FIND search string is 'ABC*DEF', 'ABC' may be matched in the first three characters of
the record and 'DEF' in the last three characters of the record.

This is not an issue with SID, JOBNAME and USERID search strings where the search is restricted to the 4 or 8 character
length of the specific SMF record fields.

REPORT Execution Wildcard Symbols

2024/09/02 11:04:59 FileKit REPORT Utility 61

SMF Type Values

Applicable only to SMF record input, the REPORT utility content match filtering parameter, TYPES supports one or more
alternate SMF record type values.

All SMF records have a record header which contains the SMF record type field SMFRTY and potentially a sub-type field
SMFSTY. These are both integer fields and so SMF records are identified by their numeric type and, if applicable, numeric
sub-type.

An SMF record type value may be of one of the following formats:

Record Type (rectype)
An integer value that identifies an individual SMF record type. If the record type has sub-types, then all sub-types
will be selected.

For example, "30" identifies SMF type 30 ("Common Address Space Work") records and "119" identifies all
sub-types of SMF type 119 ("TCP/IP Statistics") records.

Record Sub-Type (rectype-subtype or rectype#subtype)
Two integer values separated by a single hyphon ("-") or hash ("#") symbol and no intervening blanks identifies an
individual SMF record sub-type.

For example, "110-2" identifies SMF type 110 ("CICS Transaction Server") sub-type 2 ("CICS statistics") records.

Record Type Range (rectype:rectype)
Two integer values separated by a single colon (":") symbol and no intervening blanks identifies a range of SMF
record types.

The two integer values specify the first and last SMF record type in a range of SMF record types. Note that an SMF
record sub-type may not be specified as the first or last value in the range. All sub-types belonging to SMF records
included in the range will be selected.

For example, "60:69" identifies all SMF records of type 60 through 69 (VSAM related SMF records).

Timestamp Values

Applicable only to SMF record input, the REPORT utility content match filtering parameters, DATELO and DATEHI, each
support one of two types of timestamp value specification.

Absolute Timestamp:
An absolute timestamp value is a date and time specification of length between 5 and 22 characters. The exact format of
the full 22 characters is:

yyyy/mm/dd hh:MM:ss.nn

where:

yyyy The 4-byte year
mm The 2-byte month of year number
dd The 2-byte day of month number
hh The 2-byte hour of day number
MM The 2-byte minute of hour number
ss The 2-byte second of minute number
nn A 2-byte hundredths of a second number

The date portion of the timestamp must be punctuated with slash ("/") symbols between the years, months and days values
and contain no blank characters. Similarly, the time portion of the timestamp must contain no blank characters and must be
punctuated with colon (":") symbols between the hours, minutes and seconds values and a dot/period (".") symbol between
the seconds and hundredths of a second values. The date and time portions must be separated by a single blank character.

The timestamp may be truncated on the right to a minimum of 5 bytes ("yyyy/"). For a truncated absolute timestamp of
length less than 22, all the truncated numeric digits will be set to "0" for a low threshold limit timestamp, or "9" for a high
threshold limit timestamp.

For example, a low timestamp (DATELO) specification of "2018/09" is treated as "2018/09/00 00:00:00.00". A high
timestamp (DATEHI) specification of "2019/09/22 18" is treated as "2019/09/22 18:99:99.99".

REPORT Execution SMF Type Values

2024/09/02 11:04:59 FileKit REPORT Utility 62

Relative Timestamp:
A relative timestamp value is specified as a signed integer number of days relative to the current date. This value must be
zero (0) or negative since specifying a timestamp in the future is pointless for both low and high threshold limit timestamp
filtering.

The derived absolute timestamp will contain only the date (i.e. timestamp is truncated to a length of 10 in the format
"yyyy/mm/dd") and so the truncated time digits are set to "0" for a low threshold limit timestamp or "9" for a high threshold
limit timestamp.

For example, if the current date is 2019/11/13 then a relative value of "-28" would be equivalent to absolute value
"2019/10/16 00:00:00.00" for a DATELO timestamp or "2019/10/16 99:99:99.99" for a DATEHI timestamp.

REPORT Execution Timestamp Values

2024/09/02 11:04:59 FileKit REPORT Utility 63

Statistical Values

When generating printed report output, statistical values may be generated for one or more input-field, compute-field or
built-in-field named in the report definition and defined as having a numeric or elapsed time data type. Additionally, a count
of non-blank field values may be generated for fields of character data type.

Statistics values are generated at each control break level for which they have been requested. Breaks are defined in the
BREAK section of the report definition.

When a break in the output of report detail lines is triggered, either as a result of a specific BREAK section definition or at
the end of report output (the #GRAND break), then the REPORT utility will output the break footer lines for each break level
affected by the change in break key field value. Note that, for the #GRAND break, all break levels are affected.

The control break footer lines displayed for a particular break level will contain the requested statistics values applicable to
that break level. These values may be displayed in one or both of the following break line footers:

The break footer line output for the particular statistics type. The statistics values will appear aligned directly
beneath the column of values to which they apply. These values are column statistics.

1.

The text of the break footer line defined specifically by the break FOOTING operand. These values are field
statistics.

2.

Statistics Types

The types of statistical values that can be maintained by the REPORT utility are as follows:

TOTAL Sum of all column/field values in the control group of detail lines.
NBTOTAL Count of all non-blank column/field values in the control group of detail lines.
AVERAGE Mean of all column/field values in the control group of detail lines.
NZAVERAGE Mean of all non-zero column/field values in the control group of detail lines.
MINIMUM Minimum of all column/field values in the control group of detail lines.
NZMINIMUM Minimum of all non-zero column/field values in the control group of detail lines.
MAXIMUM Maximum of all column/field values in the control group of detail lines.

For column statistics, the required statistics type is generated for the particular break level by specifying the corresponding
keyword in the BREAK definition. Note that totals values are maintained and displayed by default for each break level and
must be specifically suppressed if not required. This can be done for individual break levels using the keyword NOTOTAL,
or for all break levels using option NOTOTALS.

For field statistics, the required statistics type is generated for the particular break level footing line output, by specifying
the corresponding keyword as an option on the field name in the print expression. For example, :DURATION (TOTAL) will
output the sum of all values in the break control group belonging to the compute-field, DURATION, as opposed to the last
value of DURATION in the control group.

Statistics Example

This example generates a report from SMF log records of type 119 (TCP/IP statistics), sub-type 2(TCP Connection
Termination).

Report Definition Input - ZZS.ZZSSAM1(ZZSRS008):

The report definition has column input-fields and compute-field (DURATION) as described in in examples 2. for Create New
Fields.

The BREAK and STATISTICS sections, displayed below, define 3 break levels, the types of statistics values, and the
columns for which statistic values will be generated.

The 3 break levels correspond to changes in the TCP resource name (level 2), changes in the connection start date for the
named resource (level 3) and finally, the #GRAND break for all resource connections (level 1). When one of these break
levels are triggered, breaks with a higher break level number are also triggered. Breaks are processed in order of
descending break level number. Thus, when the #GRAND break is triggered at end-of-report, break level 3 is processed
first, then break level 2 and then finally break level 1.

REPORT Execution Statistical Values

2024/09/02 11:04:59 FileKit REPORT Utility 64

BREAK:
 /* Break level 1 - The end-of-report break */
 #GRAND SPACEBEFORE(2)

 /* Break level 2 */
 SMF119#02_TCP_Connection_Termination.zRName \
 HEADING(\
 <newline> 'TCP/IP Resource:' zRNAME (STRIP,RIGHT,10) \
 <newline> '----------------------------' \
) REPEAT /* Repeat heading on each new page. */ \
 TOTAL /* TOTAL is default. */ \
 SPACEAFTER(PAGE) /* New page following break lines. */

 /* Break level 3 */
 SMF119#02_TCP_Connection_Termination.zConnectStart 10 \
 COLHEAD /* Repeat column headings. */ \
 AVERAGE /* Averages. */ \
 NZAVERAGE /* Averages of non-zero values. */ \
 MAXIMUM /* Maximums. */ \
 MINIMUM /* Minimums. */ \
 NZMINIMUM /* Minimums of non-zero values. */ \
 SPACEBEFORE(1) SPACEAFTER(1) \
 FOOTING(\
 <newline> ' -- End of' zRNAME (STRIP) \
 ' statistics for' zConnectStart (10) '--' \
 2 'Total Duration:' :Duration (TOTAL) \
 <newline> \
)

STATISTICS:
 SMF119#02_TCP_Connection_Termination.zInBytes
 SMF119#02_TCP_Connection_Termination.zOutBytes
 :DURATION

Report Output:

The following is the last page of the printed report generated for this report definition.
Break lines containing column statistics values are highlighted in blue, break FOOTING lines containing field statistics
values are highlighted in green.

12024/03/15 11:02 PAGE: 9
 TCP/IP Connection Durations by Resource Name on: 2019/05/07 16:23:56.37

 Connection
 Duration Inbound Outbound Termination
 Resource Connection Start Connection End HHH:MM:SS.SS Bytes Bytes Description
 -------- ---------------------- ---------------------- ------------ -------- -------- --------------

 TCP/IP Resource: RXSERVE

 RXSERVE 2019/05/07 15:23:29.77 2019/05/07 15:23:56.37 00:00:26.60 143 40 App_Close
 RXSERVE 2019/05/07 15:23:30.36 2019/05/07 15:23:56.49 00:00:26.13 0 0 App_Close
 RXSERVE 2019/05/07 09:02:36.56 2019/05/07 09:02:41.86 00:00:05.30 145 42 App_Close
 RXSERVE 2019/05/07 09:02:37.26 2019/05/07 09:02:41.97 00:00:04.71 0 0 App_Close
 RXSERVE 2019/05/07 09:04:08.40 2019/05/07 09:04:11.16 00:00:02.76 143 40 App_Close
 RXSERVE 2019/05/07 09:04:08.53 2019/05/07 09:04:11.28 00:00:02.75 0 0 App_Close

 ------------ -------- --------
 == Totals for 2019/05/07 (6 Items) 00:01:08.25 431 122
 Average Value 00:00:11.38 72 20
 Maximum Value 00:00:26.60 145 42
 Minimum Value 00:00:02.75 0 0
 Average of NON-ZERO Values 00:00:11.38 144 41
 Minimum of NON-ZERO Values 00:00:02.75 143 40

 -- End of RXSERVE statistics for 2019/05/07 -- Total Duration: 00:01:08.25

 Connection
 Duration Inbound Outbound Termination
 Resource Connection Start Connection End HHH:MM:SS.SS Bytes Bytes Description
 -------- ---------------------- ---------------------- ------------ -------- -------- --------------
 RXSERVE 2019/05/09 08:36:50.66 2019/05/09 08:36:55.73 00:00:05.07 166 55 App_Close
 RXSERVE 2019/05/09 08:36:50.80 2019/05/09 08:36:55.84 00:00:05.04 0 0 App_Close
 RXSERVE 2019/05/09 08:36:29.22 2019/05/09 08:36:31.65 00:00:02.43 166 55 App_Close
 RXSERVE 2019/05/09 08:36:29.36 2019/05/09 08:36:31.76 00:00:02.40 0 0 App_Close

 ------------ -------- --------
 == Totals for 2019/05/09 (4 Items) 00:00:14.94 332 110
 Average Value 00:00:03.74 83 28
 Maximum Value 00:00:05.07 166 55
 Minimum Value 00:00:02.40 0 0
 Average of NON-ZERO Values 00:00:03.74 166 55
 Minimum of NON-ZERO Values 00:00:02.40 166 55

 -- End of RXSERVE statistics for 2019/05/09 -- Total Duration: 00:00:14.94

 ------------ -------- --------
 ==== Totals for RXSERVE (10 Items) 00:01:23.19 763 232

 ============ ======== ========
 ====== Grand Totals (159 Items) 27:21:55.78 339892 11878642
 ============ ======== ========

REPORT Execution Statistics Example

2024/09/02 11:04:59 FileKit REPORT Utility 65

Break Lines

Operands specified on the break definitions in the BREAK section and options specified in the OPTIONS section determine
which break lines appear in the display for each break level.

The order in which break footer lines appear is fixed as illustrated in the following table. The table also shows the REPORT
definition keyword(s) that govern the presence and contents of a break line, and the break line decription.

Break Line
Sequence

BREAK
Keyword

OPTIONS
Keyword Description

Blank Lines SPACEBEFORE - A number of blank lines written afer the last column detail line. (Default 0)

Underline - BRKULINE
Underline of the column values for which column statistics values are
generated. The underline is comprised of hyphon ("-") symbols or, for the
#GRAND break, equals ("=") symbols, and occupies the display width of the
column.

Totals TOTAL()
NOTOTAL

BRKTOTALS
GRANDTOTAL

TOTALS
NOTOTALS

Totals line containing text defined by a print-expression, followed by the sum
column statistics values.

If NBTOT has been specified for a COLUMN section entry, then the count of
non-blank values for the column will also be displayed as a column statistics
value in the totals line.

Averages AVERAGE() - Averages line containing text defined by a print-expression, followed by the
mean column statistics values.

Maximums MAXIMUM() - Maximums line containing text defined by a print-expression, followed by the
maximum column statistics values.

Minimums MINIMUM() - Minimums line containing text defined by a print-expression, followed by the
minimum column statistics values.

Non-Zero
Averages NZAVERAGE() - Non-zero Averages line containing text defined by a print-expression,

followed by the mean of non-zero values column statistics values.

Non-Zero
Minimums NZMINIMUM() - Non-zero Minimums line containing text defined by a print-expression,

followed by the minimum of non-zero values column statistics values.

#GRAND
Underline - BRKULINE

Underline of the column statistics values. Applicable only to the #GRAND
break at the end of the printed report, the underline is comprised of equals
("=") symbols, and occupies the display width of each column statistics
column.

Footing FOOTING() -
General purpose break footer line of text defined by a print-expression. This
text may contain any number of field statistics values, of any statistics type.
For example, COST (TOTAL) in print-expression will include the totals value
for field name "COST" in the generated text.

Blank Lines SPACEAFTER - A number of blank lines written afer the last break footing lines. One or more
of these lines may be suppressed if a new page is started. (Default 1)

Notes:

1. The format of print-expression is described in Print Expression.

2. See BREAK section for the default print-expression used for TOTALS, AVERAGE, MAXIMUM, MINIMUM,
NZAVERAGE and NZMINIMUM break lines.

3. Break lines containing column statistics values will be displayed on a separate line immediately following the statistics
line text if the text would otherwise be overlayed by the first statistics column value.

4. <NEWLINE> may be used in the print-expression to split text onto multiple break lines.

REPORT Execution Break Lines

2024/09/02 11:04:59 FileKit REPORT Utility 66

Column Statistics

By default, statistics values are generated for all fields specified in the COLUMNS section that have a numeric data type.

For an input-field, the data type is obtained from the mapping structure and, for a compute-field, it is the data type of the
value assigned to the field following the first execution of the COMPUTE REXX statements. All REPORT built-in-fields have
an established data type.

The data type assigned to field may be overridden using the "CHAR", "NUM" or "TIME" operand on the field entry
specification in the COLUMNS or REQUIRED section. For example, you may want the REPORT utility to generate statistics
values for character fields which contain character representation numeric data. Similarly, if a compute-field is not to be
treated as numeric despite it being assigned a numeric value on the first call to the COMPUTE routine.

To prevent REPORT from producing unwanted column statistics, include statistics for specific columns, or include column
fields of non-numeric data type, a STATISTICS section should be included in the report definition. This section is used to
name the column fields for which column statistics will be generated and displayed.

Column Value State

Individual column values on which the statistical values are generated will be in one of the following states:

VALID

The column value is displayed in full and is of the correct data type (NUM or TIME).

A numeric (NUM) field value may have one of the numeric source data types described in the "Data Editor (SDE)
Manual" for the "CREATE STRUCTURE" primary command. For numeric character fields (including
compute-fields), the value must be comprised of numeric digits only, and any of the following:

A single decimal point symbol (".")◊
A single leading numeric sign symbol, plus ("+") or minus ("-").◊
A single exponent symbol ("E" or "e"), potentially followed by a numeric sign symbol, plus ("+") or minus
("-"), to express a positive or negative exponent.

◊

An elapsed time (TIME) field value may have one of the TIME data types described in the "Data Editor (SDE)
Manual" for the "CREATE STRUCTURE" primary command. For character fields (including compute-fields),
elapsed time may be a number of seconds only, a number of minutes and seconds, or a number of hours, minutes
and seconds, with or without a fraction of a second specification. The value is in the following format:

[[hours:]minutes:]seconds[.fraction]

The hours, minutes and seconds value may be non-normalised (i.e. any number of digits and any integer value).
The colon (":") symbol must be used to separate hours, minutes and seconds values, and the period/dot (".")
symbol used to specify fraction of a second (fraction).

VALID column values are included in column statistics and field statistics calculations.

INVALID

For an input-field of numeric or TIME data type, the input data is not in a format which is consistant with the source
field data type. For character fields (including compute-fields), the value is not in the required format as described
for VALID values.

INVALID column values are excluded from column statistics and field statistics calculations.

HIDDEN

HIDDEN column values are those which belong to column detail lines that have been suppressed using the
DETAIL(nlines) option. DETAIL specifies the maximum number of detail lines (nlines) to be reported in each
control break group. Output of detail lines that would exceed this maximum are suppressed. The DETAIL option
also supports operand ALL or DISPLAY.

If DETAIL(ALL) is specified (the default), then HIDDEN column values will be included in column statistics and field
statistics calculations.

If DETAIL(DISPLAY) is specified, then HIDDEN column values will be excluded from column statistics and field
statistics calculations.

REPORT Execution Column Statistics

2024/09/02 11:04:59 FileKit REPORT Utility 67

TRUNCATED

TRUNCATED column values are VALID column values that cannot be displayed in full due to an insufficient default
or specified column width.

The NUMTRUNC option determines whether the display area containing a TRUNCATED value is filled with the
number truncation filler character (the default), or the value is abbreviated to fit within the display area. If an
abbreviated value is displayed, then the original, unabbreviated value will be used in column statistics and field
statistics calculations. The NUMTRUNC option also supports operand INCLUDE or EXCLUDE.

If NUMTRUNC(INCLUDE) is specified (the default), then the original value for a TRUNCATED column value
displayed as filler characters, will be included in column statistics and field statistics calculations.

If NUMTRUNC(EXCLUDE) is specified, then TRUNCATED column values displayed as filler characters will be
excluded from column statistics and field statistics calculations.

DUPLICATE

A DUPLICATE column value is a VALID input-field column value that appears in consecutive report detail lines due
to it not having been reset. This occurs when a REPEAT section is used to specify a record-type that will trigger
output of a report detail line, but no RESET section entry exists for that record-type. When output is triggered for
input data of this record-type, the detail line input-field values are not reset. If these values are not then updated on
input of a subsequent record or record segment, then they will be duplicated in the next output detail line.

The NUMDUP option supports operand INCLUDE or EXCLUDE.

If NUMDUP(INCLUDE) is specified (the default), then DUPLICATE column values will be included in column
statistics and field statistics calculations.

If NUMDUP(EXCLUDE) is specified, then DUPLICATE column values will be excluded from column statistics and
field statistics calculations.

EQUAL

An EQUAL column value is a VALID column value that has the same value as that in the previous detail line.
Unlike DUPLICATE column values, which must be input-field values, EQUAL column values may also be
compute-field or built-in-field values. Also, an EQUAL column value may be one where the value has been reset
following detail line output, but then set to exactly the same value by input data processed before output of the next
detail line.

By default, EQUAL column values will be included in in column statistics and field statistics calculations.

If BLANKIFEQUAL(YES) has been specified, then EQUAL column values will be displayed as blanks and option
NUMBLANK determines whether EQUAL column values are included in statistics calculations.

If NUMBLANK(INCLUDE) is specified, then EQUAL column values that have been replaced with blanks will be
included in column statistics and field statistics calculations.

If NUMBLANK(EXCLUDE) is specified (the default), then EQUAL column values that have been replaced with
blanks will be excluded from column statistics and field statistics calculations.

Statistics Value Abbreviation

Statistics values are displayed in a designated display area.

For column statistics, this is an area below the column of values to which they apply. The display area width is the larger of
that defined for the column values and that required to display the column header. For field statistics, the display area is that
defined for the print expression element output. The default is the field value width.

Option SHORTSTATS determines whether a statistics value will be abbreviated if the display area width is not large enough
to display the statistics value.

If SHORTSTATS(YES) is supplied (the default), then the value will be shortened to fit within the display area width. For
values that contain an exponent, the mantissa is shortened. For values without an exponent, non-significant and then least
significant numeric digits are removed and a multiplier suffix added if necessary. If this means loss of significant digits, then
an inequality symbol is prefixed to the value. For example, for a display area of with 6, the value "-1.234567E16" would
display as "-1.2E16", and the value "123456780" would display as ">123M".

If SHORTSTATS(NO) is supplied or abbreviation of the value is not possible in the available display width, then the display
area is filled with the number truncation filler character defined by the NUMTRUNC option (default "*").

REPORT Execution Column Value State

2024/09/02 11:04:59 FileKit REPORT Utility 68

Report Panels

The REPORT utility may be run in the foreground using FileKit panels. The same panels may be used to generate a batch
job template or an equivalent REPORT primary command.

The REPORT utility panels are accessed via the "Print/Report Features Menu" on option 11. of the FileKit primary options
menu. Alternatively, this menu may be opened by executing primary command REPORT with no operands.

A user should select the REPORT utility panel option based on the the type of source data input. The supported input types
are:

Data set input of any organisation1.
DB2 table input2.
Data set input containing SMF output records3.

All Report Utility panels are interactive panel window. (See "Interactive Panel Windows" in the "FileKit Reference and User
Guide" for features that are common to all windows of this type.)

Primary Commands:

The following primary commands are common to each of the REPORT utility panels:

CLI | CMX
Generate a REPORT primary command with operand values that correspond to values entered in the panel fields.
The command string is displayed as editable text in a new Text Editor window view and in a format suitable for
execution using the ACTION key (shift-F4). (See "Command File Execution".)

Edit
Open a Text Editor window view to edit the Report Definition data set, library member or HFS/ZFS file specified in
the Report Definition DSN/Path/Member panel input fields. The report definition text may be updated and saved if
necessary. If the report definition file does not exist, then it will be created when changes are saved.

JCL
Generate a batch procedure containing skeleton JCL and REPORT primary command SDEIN input. The JCL DD
statements and REPORT operand values correspond to values entered in the panel fields. The job procedure is
displayed as editable text in a new Text Editor window view. (See "Batch Execution".)

Panel Input Fields:

The following input fields are common to each of the REPORT utility panels:

Report Definition:
Input fields which together identify a single, sequential or VSAM data set, GDG relative generation, HFS/ZFS file or
PDS/PDSE library member from which the report definition control statements will be obtained.

Primary command EDIT (or E) may be run to edit this report definition file.

DSN/Path>
Identifies the fully qualified data set name of a sequential, VSAM, GDG or library data set or the file path
of an HFS/ZFS file. An HFS/ZFS file path may be specified in full from the root directory or as path
relative to the user's OMVS present working directory (displayed using primary command USS PWD).

Data set names beginning with "." (dot) will be treated as having the user's DSN prefix as defined by the
User INI variable System.UserDSNPrefix.

A selectable list of data sets or HFS/ZFS files will be presented if the value entered contains wildcards
characters "*" (asterisk) or "%" (percent).

Member>
If the DSN/Path> field contains the DSN of a PDS/PDSE library, then this field specifies the name of a
library member. Otherwise, if DSN/Path> contains the DSN of a GDG, then this field specifies the relative
generation number of a GDS (e.g. 0, -1, -10).

For a library data set, a selectable list of members will be presented if no member name is specified or a
member name mask is entered. i.e. a member name containing wildcards characters "*" (asterisk) and/or
"%" (percent). For a GDG, the relative generation 0 is used if no value is entered.

REPORT Execution Report Panels

2024/09/02 11:04:59 FileKit REPORT Utility 69

Options:
Run Type> B | C | F

Specifies "B", "C" or "F" for the action to be performed by the panel when the <Enter> key is pressed.

B Generate a batch job containing JCL which executes FILEKITB with REPORT command
input and write the report output to DD SDEOUT. See "Batch Execution".

On completion, the generated job text is displayed in a Text Editor edit window. If
necessary, the job may be amended, submitted to batch (SUBMIT) and optionally saved to
DASD.

C Generate a REPORT primary command.

On completion, the generated REPORT command is displayed in a Text Editor edit window
view in a format suitable for execution using the ACTION key (default shift-F4). See
"Command File Execution".

The REPORT command may also be copied to the user's HOME command file for
execution at a later date.

F Immediately execute the REPORT utility in the FileKit foreground and generate the report
output.

The report output will be created in storage and displayed in a Text Editor window view. It
may then be saved to DASD, e.g. using edit primary commands CREATE, REPLACE or
SAVE newdsn.

Note that REPORT processing may require a large amount of storage and, if many records
are to be processed, may take some time to complete. If the expected report output is
potentially larger than the available TSO region size or more than a few thousand input
records are to be processed then consider executing the REPORT utility in batch (run type
"B").

Output Type> B | C | J | P | X
Specifies "B", "C", "J", "P" or "X" to identify the format of the report output generated when the REPORT
utility is executed.

B Opens a FileKit online Browse session for the formatted record data. Only record-types and
fields identified in the COLUMNS or REQUIRED sections of the report definition are
displayed.

The fields will be displayed grouped together by their source record-type mapping and so
not strictly in accordance with the order specified in the COLUMNS section of the report
definition.

Furthermore, if records are segmented, then unless a secondary segment mapping is
repeated within the record, all the secondary segment fields will appear on the same line as
the primary segment fields.

Browse will also define a permanent user default display format for the record-types
involved, meaning any future online browse will display only the selected fields. To revert to
the default just type "SEL *" on the command line of the browse session.

Report definitions sections other than BLANKWHENZERO, COLUMNS, FILTER, MAP,
REPEAT and REQUIRED have no effect on BROWSE output.

C Comma Separated Variable (CSV) output suitable for loading into various external formats
such as a database table or spreadsheet. The first row will contain the column headings as
defined by your report definition file.

J JavaScript Object Notation (JSON) output.
P Standard Printed report output with page formatting (headings, footings and control

breaks). Printed output may also generate column totals and other statistical values based
on input field data.

X Extensible Markup Language (XML) output.

Page Depth>
For printed report output only, this value specifies the number of lines to be printed per page. This value
will override a value specified by the PAGEDEPTH option in the report definition.

If left blank or specified as "0" (zero), and if the PAGEDEPTH option does not exist in the report definition,
then the value assigned by the PAGEDEPTH Data Editor option will be used.

Type "SD QUERY PAGEDEPTH" to query your current Data Editor page depth value and
"SD SET PAGEDEPTH n" to set it. (See "PAGEDEPTH - SET/QUERY/EXTRACT Option" in the "FileKit
Data Editor" publication.)

REPORT Execution Report Panels

2024/09/02 11:04:59 FileKit REPORT Utility 70

Formatted Record Report

Figure 12. Formatted Records REPORT Utility Panel (=11.2).

Overview:

The Formatted Record Report Utility panel (ZZSGRPT0) is the FileKit display interface to the REPORT Utility where input is
to be sourced from a data set, library member or HFS/ZFS file. For input file sources that contain records written by IBM
System Management Facilities (SMF), the SMF Formatted Record Report Utility panel should be used instead.

To open the "Formatted Record Report Utility" panel, first select option 11. "Print/Report" from the FileKit primary options
menu to open the "Print/Report Features" menu and then select option 2. "Report". Alternatively, simply enter the fast path
"=11.2" from any FileKit command prompt.

Primary Commands:

In addition to commands CLI (or CMX), Edit and JCL which are common to each REPORT utility panel, the Formatted
Record Report Utility panel supports the following primary commands:

COPYB
Open a Text Editor window view to edit the copy book dat set or library member specified in the
Structure/Copybook overlay DSN/Member panel input fields. The copy book text may be updated and saved if
necessary. If the copy book does not exist, then it will be created when changes are saved.

Input
Open a Data Editor window view to browse the input data records data set, library member or HFS/ZFS file
specified in the Data File DSN/Path/Member panel input fields. The record data in the browse display will be
formatted using the copy book specified in the Structure/Copybook overlay DSN/Member panel input fields. If no
copy book structure is specified in these fields, then an error is returned.

Panel Input Fields:

By default, field entries are populated with arguments and options that were entered the last time the panel was used.

Report Definition:
Report definition input fields are common to each of the REPORT Utility panels. See "Report Panels" for a
description of use of the Report Definition fields.

Data File:
Input fields which together identify an existing sequential or VSAM data set, GDG relative generation, HFS/ZFS file
or PDS/PDSE library member containing the report source data records. This data source will override the input
data source provided in the INPUT section of the report definition.

Primary command INPUT (or I) may be run to browse the formatted input data as mapped by the specified
structure/copy book.

REPORT Execution Formatted Record Report

2024/09/02 11:04:59 FileKit REPORT Utility 71

DSN/Path>
Identifies the fully qualified data set name of a sequential, VSAM, GDG or library data set or the file path
of an HFS/ZFS file. An HFS/ZFS file path may be specified in full from the root directory or as path
relative to the user's OMVS present working directory (displayed using primary command USS PWD).

Data set names beginning with "." (dot) will be treated as having the user's DSN prefix as defined by the
User INI variable System.UserDSNPrefix.

A selectable list of data sets or HFS/ZFS files will be presented if the value entered contains wildcards
characters "*" (asterisk) or "%" (percent).

Member>
If the DSN/Path> field contains the DSN of a PDS/PDSE library, then this field specifies the name of a
library member. Otherwise, if DSN/Path> contains the DSN of a GDG, then this field specifies the relative
generation number of a GDS (e.g. 0, -1, -10).

For a library data set, a selectable list of members will be presented if no member name is specified or a
member name mask is entered. i.e. a member name containing wildcards characters "*" (asterisk) and/or
"%" (percent). For a GDG, the relative generation 0 is used if no value is entered.

Structure/Copybook overlay:
Input fields which together identify an input record formatting structure.

This structure will override a structure definition provided via a USING operand in the INPUT section of the report
definition. Providing a record formatting structure will also override use of record field mappings defined by a MAP
section in the report definition.

The fields identify the name of an existing data set or PDS/PDSE library member containing one or more record
mapping structures that will be used to map the layout of input data records. The structure input may be of any one
of the following types:

A FileKit SDO structure. (May contain a number of different record-type mappings.)◊
A COBOL copy book containing data description source.◊
An Assembler source module containing DSECT definitions.◊
A PL1 %INCLUDE directive source member containing data declaration structures.◊
SYSADATA output generated by the assembley of an assembler source using the HLASM (High Level
Assembler) program, or generated by the compilation of a COBOL or PL1 source using the Enterprise
COBOL or Enterprise PL1 compiler.

◊

DSN>
Identifies the fully qualified data set name of a sequential data set or PDS/PDSE library containing the
structure or copybook source.

Data set names beginning with "." (dot) will be treated as having the user's DSN prefix as defined by the
User INI variable System.UserDSNPrefix.

A selectable list of data sets will be presented if the value entered contains wildcards characters "*"
(asterisk) or "%" (percent).

Member>
If the DSN> field contains the DSN of a PDS/PDSE library, then this field specifies the name of a library
member.

A selectable list of members will be presented if no member name is specified or a member name mask is
entered. i.e. a member name containing wildcards characters "*" (asterisk) and/or "%" (percent).

Type>
Specifies the type (ADATA, ASM, COBOL, PL1 or SDO) of structure/copybook identified by the DSN>
and Member> fields.

Record Selection:
Fields which specify selection criteria by which input data records may be filtered. Only records that satisfy the
specified selection criteria are selected for reporting.

See Record Filtering for full details on the relationship between input limit, output limit and content match criteria.

Input Limit>
The Input Limit> input field value specifies the maximum number of records that may be read from the
input file. This value will override a value specified by the ILIM option in the report definition.

Each input record is processed sequentially until this input record threshold is reached.

The input limit includes records which may subsequently be excluded from REPORT processing by a filter
clause specified via a FILTER section in the report definition or, alternatively, via specification of find
search strings.

An input limit of "0" (zero) implies no input record limit and is set by default when no input limit is supplied
and no ILIM option is set in the report definition.

REPORT Execution Formatted Record Report

2024/09/02 11:04:59 FileKit REPORT Utility 72

Output Limit>
The Output Limit> input field value specifies the maximum number of detail line records that may be
written to the output report. This value will override a value specified by the OLIM option in the report
definition.

Once the number of output report detail lines reaches this limit, no further input records will be processed.

An output limit of "0" (zero) implies no output record limit and is set by default when no OLIM operand
value is supplied and no OLIM option is set in the report definition,

Find String>
Find String> field input specifies one or more comma separated search strings. These search string
values will override values specified by the FIND option in the report definition for Unformatted Record
Find String matching.

The format of a search string is described by search values under "Record Filtering".

If a match on any of the search strings is located at any position within an unformatted input record, then
Unformatted Record Find String matching will return a true result (1) and the record will be passed for
REPORT processing. Otherwise a false result (0) is returned.

For example, the following input will set a true condition if the unformatted record contains any one of the
strings "Belfast", "Cardiff", "Edinburgh" or "London". at any position within the record data.

Find String> c'Belfast', c'Cardiff', c'Edinburgh', c'London'

Specifying a search string is invalid if a filter expression is provided via the FILTER section of the report
definition. If both a FILTER section and a find search string exist, then the error message ERR065E is
returned.

The panel entry field for Field String> displays only the first 45 characters of any input. To enter or
display search values that extend beyond this display length, position the cursor in the input field area and
press shift-F2 (EXPAND). A Text Editor window will be displayed allowing entry of FIND search values
that may stream multiple text edit lines.

Options:
Option input fields are common to each of the REPORT Utility panels. See "Report Panels" for a description of use
of the Option fields.

DB2 Report

For reports generated from DB2 table data, input may be an existing named TABLE created in the local (or a remote) DN2
sub-system, or a result table generated by DB2 from an existing named VIEW or user supplied SQL query statement.

FileKit has three separate DB2 report panels, each providing an alternative method by which the DB2 table source may be
specified. These are:

A named TABLE or VIEW.1.
An SQL Query entered directly via a panel input field.2.
An SQL Query supplied via an input file.3.

To access the DB2 Report panels, first select option 11. "Print/Report" from the FileKit primary options menu to open the
"Print/Report Features" menu and then select option 3. "DB2 Report" to open the "Create a Report using DB2 Table Data"
menu. The required DB2 report panel may be launched from this menu.

REPORT Execution DB2 Report

2024/09/02 11:04:59 FileKit REPORT Utility 73

DB2 Report - Table/View

Figure 13. DB2 Table/View REPORT Utility Panel (=11.3.1).

Overview:

The DB2 Single Table Report Utility panel (ZZS2RPT0) is the FileKit display interface to the REPORT Utility where input is
to be sourced from a named DB2 TABLE, ALIAS or VIEW that exists either in the local DB2 server or a remotely connected
DB2 server.

To open the "DB2 Single Table Report Utility" panel, select option 1. "Single Table" from the "Create a Report using DB2
Table Data" menu. Alternatively, simply enter the fast path "=11.3.1" from any FileKit command prompt.

On opening the panel, a connection is made to the user's default DB2 sub-system (as defined by the "DB2 primary option
menu"). Furthermore, if the DB2 Table/View input fields are empty, then the "DB2 Table Selection panel" will be displayed.
This panel contains a list of existing table, alias and view names which have an Owner/Creator name matching that of the
current user's SQLID and which may be further filtered using the panel input fields. Select an entry from the list to populate
the DB2 Table/View input fields of the DB2 Single Table Report panel.

Primary Commands:

In addition to commands CLI (or CMX), Edit and JCL which are common to each REPORT utility panel, the Formatted
Record Report Utility panel supports the following primary commands:

Input
Open a Data Editor window view to browse the input DB2 table rows identified by the table, alias or view name
specified in the DB2 Table/View SSN/Location/Owner/Name panel input fields. The table row data in the browse
display will be formatted using a temporary SDO structure generated by FileKit from the DB2 table column
information returned in the SQLDA.

SORT
Open the Create DB2 ORDER BY Clause panel to select columns by which the DB2 rows will be sorted.

WHERE
Open the DB2 Select table rows by column value panel to build an SQL Query WHERE clause. The WHERE
clause will be included in the SQL Query constructed by FileKit to retrieve DB2 table rows.

Use of a WHERE clause is the means by which DB2 table rows are filtered and is broadly equivalent to the use of
content matching criteria elements (FIND, etc.) for data file and SMF record input.

Panel Input Fields:

By default, field entries are populated with arguments and options that were entered the last time the panel was used.

REPORT Execution DB2 Report - Table/View

2024/09/02 11:04:59 FileKit REPORT Utility 74

Report Definition:
Report definition input fields are common to each of the REPORT Utility panels. See "Report Panels" for a
description of use of the Report Definition fields.

DB2 Table/View:
Input fields which together identify the source TABLE, VIEW or ALIAS from which a DB2 result table is created.
The DB2 result table rows contain the values to be reported. This DB2 result table definition will override any result
table definition provided in the INPUT section of the report definition.

A DB2 TABLE, VIEW and ALIAS may be referenced by a 3, 2 or 1 qualifier identfier representing
location.schema.name, schema.name or name respectively. The location value corresponds to the Location> field
value, schema to the Owner> field value and name to the Name> field value.

Wildcard symbols "%" (percent), "*" (asterisk) and/or "_" (underscore) may be entered in all but the SSN> to
specify a generic mask value from which a matching entry may be selected.

Primary command INPUT (or I) may be run to browse the DB2 result table report input data.

SSN>
If specified, this field identifies the local DB2 sub-system (DB2 server) to which a connection will be made
in order to locate the required TABLE, ALIAS or VIEW object. This may be a different sub-system to the
default sub-system to which a connection has already been made and will override an ssn value specified
by DB2(ssn) in the INPUT section of the report definition.

If no DB2 sub-system name is specified in this field or in the report definition, then the default sub-system
(set by the "DB2 Primary Option menu") is used. Note that, the default sub-system to which FileKit is
connected is displayed in parentheses following "DB2" in the panel's title bar.

Location>
If specified, this field identifies the location of a remote DB2 server at which the required DB2 TABLE,
ALIAS or VIEW object is defined. Note that a BIND for the FileKit DB2 PLAN (CBLPLAN1) must have
occurred for the remote DB2 server for successful connection.

Enter a wildcard symbol in this field to select from a list of available remote server locations.

If this field is empty then the source object identifier will not include a location qualifier and so the object
must exist on the local DB2 server.

Owner>
If specified, this field identifies the owner (schema) name of the DB2 source TABLE,VIEW or ALIAS
object.

If this field is empty or contains a mask value, then if the value entered in the Name> field does not
uniquely identify a DB2 TABLE, VIEW or ALIAS object, the "DB2 Table Selection panel" is opened
displaying all object identifiers that match the Location/Owner/Name mask.

Name>
This field identifies the name of the DB2 TABLE, VIEW or ALIAS object.

If this field is empty or contains a mask value, and the object name cannot be uniquely determined using
the mask and the value in the Object> field, the "DB2 Table Selection panel" is opened displaying all
object identifiers that match the Location/Owner/Name mask.

DB2 Row Selection:
Fields which together identify a window of rows to be fetched from the DB2 result table.

Start>
Specifies the number of the input DB2 result table row from which REPORT processing will start. Rows
will be fetched sequentially from this row number. This will override a row number value specified by
FROM ROW in the INPUT section of the report definition.

Rows that occur before the specified row number will be bypassed and not included in the number of rows
count identified by an input limit (Max>) specification.

By default, REPORT processing starts from the first row of the result table.

Max>
Specifies the maximum number of rows that may be fetched from the DB2 result table. This will override a
value specified by FOR ROWS in the INPUT section of the report definition.

Note that, if an ILIM input limit value is specified as an option in the report definition, then this will override
the value specified in the Max> field.

Output Limit>
The Output Limit> input field value specifies the maximum number of detail line records that may be written to
the output report. This value will override a value specified by the OLIM option in the report definition.

Once the number of output report detail lines reaches this limit, no further input records will be processed.

An output limit of "0" (zero) implies no output record limit and is set by default when no value is supplied and no
OLIM option is set in the report definition.

REPORT Execution DB2 Report - Table/View

2024/09/02 11:04:59 FileKit REPORT Utility 75

Options:
Option input fields are common to each of the REPORT Utility panels. See "Report Panels" for a description of use
of the Option fields.

REPORT Execution DB2 Report - Table/View

2024/09/02 11:04:59 FileKit REPORT Utility 76

DB2 Table Selection

Figure 14. DB2 Table/View Selection Panel.

Overview:

This panel is used to select a DB2 TABLE, VIEW or ALIAS object which is defined at the local or remote DB2 server.

This panel supports filtering of entries based on location, owner, database and/or tablespace name. It also allows filter
values to be masks containing one or more of the DB2 pattern-expression wild card symbols "%" (percent) and/or "_"
(underscore).

The selection panel input fields may be ammended to re-apply the filter and so refresh the display of table entries fetched
from the DB2 catalog table SYSIBM.SYSTABLES. See IBM publication "DB2 SQL Reference", "Appendix - DB2 Catalog
Tables" for details on the column values displayed in this table.

Panel Input Fields:

Location>
Specifies the remote server location of the table name.
A server location has a maximum length of 16 characters.

Owner>
Specifies a filter on table schema (owner) ID.
A table schema has a maximum length of 128 characters.

Name>
Specifies a filter on table name.
A table name has a maximum length of 128 characters.

DBName>
Specifies a filter on the database name to which the table belongs.
The database name has a maximum length of 8 characters.

TSName>
Specifies a filter on the table space name in which the table is defined.
The table space name has a maximum length of 8 characters.

REPORT Execution DB2 Table Selection

2024/09/02 11:04:59 FileKit REPORT Utility 77

DB2 WHERE Clause - Select Table Rows by Column Value

Figure 15. DB2 Table/View REPORT Utility Panel - WHERE Clause.

Overview:

This panel is opened when primary command WHERE (or WH) is executed and is used to generate a basic SQL WHERE
clause to be included in the dynamically generated SQL Query passed to DB2. This WHERE clause will override a WHERE
clause specification provided in the INPUT section of the report definition.

The panel contains an embedded table of rows. Each row represents a DB2 SQL WHERE clause predicate where the form
of expression to be tested is a column name. Supported DB2 predicate types are Basic, BETWEEN, IN, LIKE and NULL as
indicated by the Operator (Op) field. The embedded table is initialised so that an unselected predicate exists for each
named column of valid data type defined by the DB2 TABLE, VIEW or ALIAS to which the generated WHERE clause will
apply.

Standard table edit primary and line commands may be used to INSERT, DELETE, REPLICATE, COPY or MOVE panel
table rows as appropriate, to scroll the table display UP, DOWN, LEFT and RIGHT and also to ZOOM the display of an
individual table row.

A predicate is selected for inclusion in the final WHERE search condition by the presence of a valid operator value. A blank
or null value in the operator column will deselect the predicate. The order in which selected predicate entries occur within
the table dictates their location within the generated search condition and so table rows should be moved as required.
Similarly, if a column name is to be referenced in more than one predicate, table rows should be replicated or copied as
appropriate.

The WHERE search condition is built by concatenating the selected table rows so that search conditions started by a left
parenthesis in one table row may be ended by a right parenthesis in a subsequent table row.

The embedded table includes left and right parenthesis columns in order to allow specification of predicate precedence. For
selected predicates, The left parenthesis column may contain one or more "(" (left parenthesis) symbol, the right
parenthesis column may contain one or more ")" (right parenthesis) symbol and the combination of the specified left and
right parentheses must be balanced for selected predicates.

If the width of any of the input fields in the embedded table view is not sufficient to enter the required input value, then place
the cursor on the table row and press the ZOOM key (default Shift-F5) to display the table row in single view. If necessary,
the required input field in the zoomed table row panel may be expanded (default Shift-F2) in order to enter the long input
field value.

Having selected and modified the table row entries, closing the panel (default F3) will first validate the field entries and then,
if no errors are flagged, generate the WHERE search condition.

Panel Input Fields:

Field names that follow are as appear in the zoomed view of a table row. Names in parentheses correspond to the
equivalent column name in table view.

Row selection criteria for table:
A non-enterable field displaying the qualified DB2 table or view for which WHERE clause row selection criteria is to
be defined.

Connector> (Con)
Specifies the logical operator connector (AND or OR) that is to be applied to the result of the predicate specified in
the table row when deriving the result of a search condition.

REPORT Execution DB2 WHERE Clause - Select Table Rows by Column Value

2024/09/02 11:04:59 FileKit REPORT Utility 78

Since these logical operators are dyadic, the result of the predicate specified in the table row in which the operator
is entered is applied to the result of the predicate or search condition entered in the selected table row (or rows)
that occur immediately before it.

If one of these operators is entered in the first selected table row (predicate), it will be excluded from the generated
WHERE search condition. If a blank value is entered for any selected table row other than the first, then error
ZZSD633E is returned.

By default, all table rows except the first are primed with connector AND.

Parentheses> ("(")
Specifies up to eight "(" (left parenthesis) symbols which each denote the start of a search condition that exists
within the final WHERE clause search condition.

A search condition is enclosed by a "(" left parenthesis and ")" right parenthesis symbol and comprises multiple
predicates and/or search conditions each connected by a logical operator (AND or OR). Therefore, for each search
condition started by a left parentheis, there must exist a subsequent ending right parenthesis specified in the right
parentheses) column of a subsequent, selected table row. If not, the left and right parentheses are unbalanced
and error ZZSD635E is returned.

In all selected table rows, a left parenthesis entered within a search condition that has not yet been ended by a
right parenthesis, indicates the start of a new, nested search condition. Therefore, care should be taken when
inserting parentheses or moving/copying/deleting/deselecting table rows so that the logical interpretation of the
final WHERE clause search condition is as required.

Column Name: (Column name)
A non-enterable field displaying the name of a column in the DB2 table or view against which the predicate
value(s) are tested. Column name is the form of expression specified on the left of the predicate operator when the
WHERE clause search condition is built.

Column Type: (Data type)
A non-enterable field indicating the data type of the column and, if appropriate, its length, precision and scale in
parentheses.

Operator> (Op)
Specifies the operator used to evaluate the predicate.

Entering a value in this field also selects the table row (logical connector, predicate and parentheses specification)
for inclusion in the generated WHERE clause. A blank in this field will exclude (deselect) the table row.

Enter an invalid operator in this field to display the list of valid, selectable operator entries which are as follow:

<blank> No operator - entry deselected.
= EQ Equal to.
<> ¬= \= NE Not equal to.
> GT Greater than.
< LT Less than.
¬< \< >= GE Not less than / Greater than or equal to.
¬> \> <= LE Not greater than / Less than or equal to.
LK LIKE pattern-expression
¬LK \LK NLK NOT LIKE pattern-expression
BT BETWEEN value AND value
¬BT \BT NBT NOT BETWEEN value AND value
IN IN value-list
¬IN \IN NIN NOT IN value-list
NL NULL
¬NL \NL NNL NOT NULL

Value> (Value)
Specifies the constant value(s) or alternatively, for columns of numeric data type only, the arithmetic expression
value(s) used to test the named column value.

Constant values may be of type integer, floating-point, decimal, decimal floating-point, character string, binary or
datetime. The type of constant specified will be validated against the data type of the named column.

Specification of multiple values may be supported or required by the predicate type as determined by the selected
predicate operator. Multiple values are specified in this input field using unquoted comma (,) delimiter characters.
e.g. 'A','B'

Predicate type value requirements are as follow:

REPORT Execution DB2 WHERE Clause - Select Table Rows by Column Value

2024/09/02 11:04:59 FileKit REPORT Utility 79

Predicate Type Operators Value(s)

Basic

= EQ
<> ¬= \= NE
> GT
< LT
¬< \< >= GE
¬> \> <= LE

A single constant or arithmetic expression value.

BETWEEN BT
¬BT \BT NBT

Exactly two constant or arithmetic expression values.
The second value must be greater than the first value so that they
define the limits of an ascending range of values.

IN IN
¬IN \IN NIN

One or more constant or arithmetic expression values which together
define a list of possible values against which the column value will be
tested.

NULL NL
¬NL \NL NNL

No value must be entered. Any entry in the value field will return error
ZZSD627E.

Each value entered for predicates that test columns of character data types must begin and end with the SQL
string delimiter character. If these characters are missing, then the value will automatically be enclosed by
apostrophe characters (') during vetting processing as the WHERE clause is generated.

The case of alpha characters entered for each field value is respected or ignored as indicated by the selected
value option (VO). This is true, regardless of whether the value has been entered with enclosing SQL delimiter
characters.

Option> (VO)
A single character option code which determines interpretation of character string constants in the Value input field.

Respect Case
Following successful value vetting, alpha characters within each specified value will be inserted,
unchanged into the generated WHERE clause syntax.
This is the default option.

Ignore Case
Following successful value vetting, alpha characters within each specified value will be upper cased
before being inserted into the generated WHERE clause syntax.

Any Case
Following successful value vetting, alpha characters within each specified value will be upper cased
before being inserted into the generated WHERE clause syntax. Additionally, the scalar function UPPER
is applied to the column name with default locale and defined column length. This makes the predicate a
test on character strings where upper and lower case alpha character equivalents will test equal.

Parentheses> (")")
Specifies up to eight ")" (right parenthesis) symbols which each denote the end of a search condition that exists
within the final WHERE clause search condition.
See also left parentheses "(" .

REPORT Execution DB2 WHERE Clause - Select Table Rows by Column Value

2024/09/02 11:04:59 FileKit REPORT Utility 80

DB2 ORDER BY Clause

Figure 16. DB2 Table/View REPORT Utility Panel - ORDER BY Clause.

Overview:

This panel is opened when primary command SORT is executed. It is used to construct an SQL ORDER BY clause which
will be included as part of the dynamically generated SQL Query passed to DB2. This ORDER BY clause will override a
SORTINDEX, ORDER BY or SORT specification provided in the INPUT section of the report definition.

The panel contains an embedded table of rows, one for each column belonging to the the specified DB2 TABLE, VIEW or
ALIAS object. A row may be selected to include the column name in a DB2 SQL ORDER BY clause.

A column name is selected for inclusion in the final ORDER BY clause by the presence of a sort hierarchy sequence
number in the Order field for that column. A blank or null value in this field will deselect the entry as an ORDER BY column.
The sort hierarchy sequence number defines the order in which the columns occur in the ORDER BY clause.

Having selected and modified the table row entries, closing the panel (default F3) will first validate the field entries and then,
if no errors are flagged, generate the ORDER BY clause.

Panel Input Fields:

Field Name>
This input field may be used to supply a DB2 column name mask. The embedded table will refresh displaying only
rows where the DB2 column name matches the mask.

A column name mask may contain any number of "*" (asterisk) or "%" (percent) wildcard symbols where "*"
represents zero or more of any character and "%" represents exactly one of any character. If no value is entered in
this filed, then all DB2 result table column names are displayed.

Order
An entry in this field will flag the DB2 column to be included in the generated ORDER BY clause. The input value
must be numeric and defines the hierarchical position of the column within the ORDER BY clause.

Columns will be positioned in the generated ORDER BY clause in order of ascending hierarchical value. i.e. The
column assigned the lowest value (usually, but not necessarily 1) will occur first in the ORDER BY clause and will
be the primary column on which DB2 table rows are sorted.

If column names are assigned the same hierarchical number, then these columns will be positioned in the ORDER
BY clause in the order in which they occur in the embedded panel table.

A/D
Specifies either "A" or "D" to indicate that the DB2 column is to be sorted in ascending or descending order
respectively.

REPORT Execution DB2 ORDER BY Clause

2024/09/02 11:04:59 FileKit REPORT Utility 81

Name
A non-enterable field displaying the name of a DB2 result table column.

Len
A non-enterable field displaying the source field length of a DB2 result table column value. For DECIMAL, FLOAT
and DECFLOAT data types, this value is the defined precision value.

DataType
A non-enterable field displaying the data type of a DB2 result table column value.

Prec
A non-enterable field displaying the precision of a DB2 result table column value. For all data types other than
DECIMAL, FLOAT and DECFLOAT, this value is the column source field length.

Scal
A non-enterable field displaying the scale of a DB2 result table column value of DECIMAL data type. For all other
data types, this field will display as zero (0).

REPORT Execution DB2 ORDER BY Clause

2024/09/02 11:04:59 FileKit REPORT Utility 82

DB2 Report - SQL Query Control File

Figure 17. DB2 SQL Query Control File REPORT Utility Panel (=11.3.2).

Overview:

The DB2 SQL Query Control File Report Utility panel (ZZS2RPT1) is the FileKit display interface to the REPORT Utility
where input is to be sourced from a DB2 result table. The result table is generated from an SQL Query statement provided
as text in a data set or library member (e.g. used as input to IBM SPUFI or the FileKit EXECSQL utility).

To open the "DB2 SQL in a File Report Utility" panel, select option 2. "SQL File" from the "Create a Report using DB2 Table
Data" menu. Alternatively, simply enter the fast path "=11.3.2" from any FileKit command prompt.

On opening the panel, a connection is made to the user's default DB2 sub-system (as defined by the "DB2 primary option
menu").

Note that, if the report definition input includes a FILTER section, then the filter clause will be ignored and warning message
ZZSR064W returned. This is because the FILTER section will attempt to generate a WHERE clause to add to the SQL
Query. However, the SQL Query passed via the SQL input file is already fully formed.

Primary Commands:

In addition to commands CLI (or CMX), Edit and JCL which are common to each REPORT utility panel, the Formatted
Record Report Utility panel supports the following primary commands:

Input
Open a Data Editor window view to browse the input DB2 result table rows generated by the SQL Query found in
the SQL input file. The table row data in the browse display will be formatted using a temporary SDO structure
generated by FileKit from the DB2 table column information returned in the SQLDA. (See "DB2 Result Table View"
)

SQL
Open a Text Editor window view to edit the SQL input data set, library member or HFS/ZFS file specified in the
Input SQL File DSN/Path/Member panel input fields. The SQL Query statement text may be updated and saved if
necessary. If the SQL file does not exist, then it will be created when changes are saved.

Panel Input Fields:

By default, field entries are populated with arguments and options that were entered the last time the panel was used.

Report Definition:
Report definition input fields are common to each of the REPORT Utility panels. See "Report Panels" for a
description of use of the Report Definition fields.

REPORT Execution DB2 Report - SQL Query Control File

2024/09/02 11:04:59 FileKit REPORT Utility 83

Input SQL File:
Input fields which together identify a single, sequential or VSAM data set, GDG relative generation, HFS/ZFS file or
PDS/PDSE library member from which the SQL Query statement will be obtained. The SQL source must be in a
format suitable for input to the IBM SPUFI or FileKit EXECSQL utility.

Primary command SQL may be run to edit this SQL Query file and primary command INPUT (or I) may be run to
display the contents of the result table generated by the SQL Query statement. (See "DB2 Result Table View")

The DB2 result table definition specified by the SQL Query will override any result table definition provided in the
INPUT section of the report definition.

DSN/Path>
Identifies the fully qualified data set name of a sequential, VSAM, GDG or library data set or the file path
of an HFS/ZFS file. An HFS/ZFS file path may be specified in full from the root directory or as path
relative to the user's OMVS present working directory (displayed using primary command USS PWD).

Data set names beginning with "." (dot) will be treated as having the user's DSN prefix as defined by the
User INI variable System.UserDSNPrefix.

A selectable list of data sets or HFS/ZFS files will be presented if the value entered contains wildcards
characters "*" (asterisk) or "%" (percent).

Member>
If the DSN/Path> field contains the DSN of a PDS/PDSE library, then this field specifies the name of a
library member. Otherwise, if DSN/Path> contains the DSN of a GDG, then this field specifies the relative
generation number of a GDS (e.g. 0, -1, -10).

For a library data set, a selectable list of members will be presented if no member name is specified or a
member name mask is entered. i.e. a member name containing wildcards characters "*" (asterisk) and/or
"%" (percent). For a GDG, the relative generation 0 is used if no value is entered.

SSN>
If specified, this field identifies the local DB2 sub-system (DB2 server) to which a connection will be made before
the SQL Query statement is executed. This may be a different sub-system to the default sub-system to which a
connection has already been made and will override an ssn value specified by DB2(ssn) in the INPUT section of
the report definition.

If no DB2 sub-system name is specified in this field or in the report definition, then the default sub-system (set by
the "DB2 Primary Option menu") is used. Note that, the default sub-system to which FileKit is connected is
displayed in parentheses following "DB2" in the panel's title bar.

DB2 Row Selection:
Fields which together identify a window of rows to be fetched from the DB2 result table.

Start>
Specifies the number of the input DB2 result table row from which REPORT processing will start. Rows
will be fetched sequentially from this row number. This will override a row number value specified by
FROM ROW in the INPUT section of the report definition.

Rows that occur before the specified row number will be bypassed and not included in the number of rows
count identified by an input limit (Max>) specification.

By default, REPORT processing starts from the first row of the result table.

Max>
Specifies the maximum number of rows that may be fetched from the DB2 result table. This will override a
value specified by FOR ROWS in the INPUT section of the report definition.

Note that, if an ILIM input limit value is specified as an option in the report definition, then this will override
the value specified in the Max> field.

Output Limit>
The Output Limit> input field value specifies the maximum number of detail line records that may be written to
the output report. This value will override a value specified by the OLIM option in the report definition.

Once the number of output report detail lines reaches this limit, no further input records will be processed.

An output limit of "0" (zero) implies no output record limit and is set by default when no value is supplied and no
OLIM option is set in the report definition.

Options:
Option input fields are common to each of the REPORT Utility panels. See "Report Panels" for a description of use
of the Option fields.

REPORT Execution DB2 Report - SQL Query Control File

2024/09/02 11:04:59 FileKit REPORT Utility 84

DB2 Report - SQL Query Statement

Figure 18. DB2 SQL Query Statement REPORT Utility Panel (=11.3.2).

Overview:

The DB2 SQL Query Staement Report Utility panel (ZZS2RPT2) is the FileKit display interface to the REPORT Utility where
input is a DB2 result table generated from an SQL Query statement provided via a panel input field.

To open the "DB2 SQL Input Field" panel, select option 3. "SQL" from the "Create a Report using DB2 Table Data" menu.
Alternatively, simply enter the fast path "=11.3.3" from any FileKit command prompt.

On opening the panel, a connection is made to the user's default DB2 sub-system (as defined by the "DB2 primary option
menu").

Note that, if the report definition input includes a FILTER section, then the filter clause will be ignored and warning message
ZZSR064W returned. This is because the FILTER section will attempt to generate a WHERE clause to add to the SQL
Query. However, the SQL Query passed to the REPORT utility is already fully formed.

Primary Commands:

In addition to commands CLI (or CMX), Edit and JCL which are common to each REPORT utility panel, the Formatted
Record Report Utility panel supports the following primary commands:

Input
Open a Data Editor window view to browse the input DB2 result table rows generated by the supplied SQL Query.
The table row data in the browse display will be formatted using a temporary SDO structure generated by FileKit
from the DB2 table column information returned in the SQLDA. (See "DB2 Result Table View")

Panel Input Fields:

By default, field entries are populated with arguments and options that were entered the last time the panel was used.

Report Definition:
Report definition input fields are common to each of the REPORT Utility panels. See "Report Panels" for a
description of use of the Report Definition fields.

SQL Statement>
Specifies a valid SQL Query statement from which the DB2 result table will be generated.

Primary command INPUT (or I) may be run to display the contents of the result table generated by the SQL Query
statement. (See "DB2 Result Table View")

It is quite likely that the input SQL statement will exceed the 60 characters provided by this panel input field. If so,
the field may be expanded by positioning the cursor in the field input area and executing the EXPAND command

REPORT Execution DB2 Report - SQL Query Statement

2024/09/02 11:04:59 FileKit REPORT Utility 85

(default shift-F2). See the "DB2 SQL Expanded View" for details of this field view format.

On closing the expanded view of the field, the first 60 characters of the SQL Query will display within the input field.

SSN>
If specified, this field identifies the local DB2 sub-system (DB2 server) to which a connection will be made before
the SQL Query statement is executed. This may be a different sub-system to the default sub-system to which a
connection has already been made and will override an ssn value specified by DB2(ssn) in the INPUT section of
the report definition.

If no DB2 sub-system name is specified in this field or in the report definition, then the default sub-system (set by
the "DB2 Primary Option menu") is used. Note that, the default sub-system to which FileKit is connected is
displayed in parentheses following "DB2" in the panel's title bar.

DB2 Row Selection:
Fields which together identify a window of rows to be fetched from the DB2 result table.

Start>
Specifies the number of the input DB2 result table row from which REPORT processing will start. Rows
will be fetched sequentially from this row number. This will override a row number value specified by
FROM ROW in the INPUT section of the report definition.

Rows that occur before the specified row number will be bypassed and not included in the number of rows
count identified by an input limit (Max>) specification.

By default, REPORT processing starts from the first row of the result table.

Max>
Specifies the maximum number of rows that may be fetched from the DB2 result table. This will override a
value specified by FOR ROWS in the INPUT section of the report definition.

Note that, if an ILIM input limit value is specified as an option in the report definition, then this will override
the value specified in the Max> field.

Output Limit>
The Output Limit> input field value specifies the maximum number of detail line records that may be written to
the output report. This value will override a value specified by the OLIM option in the report definition.

Once the number of output report detail lines reaches this limit, no further input records will be processed.

An output limit of "0" (zero) implies no output record limit and is set by default when no value is supplied and no
OLIM option is set in the report definition.

Options:
Option input fields are common to each of the REPORT Utility panels. See "Report Panels" for a description of use
of the Option fields.

DB2 SQL Expanded View

Figure 19. DB2 SQL Query Statement - Expanded View.

Overview:

This is a Text Editor edit view of the SQL statement panel field contents. It allows for a long SQL statement to be entered in
the panel field.

REPORT Execution DB2 SQL Expanded View

2024/09/02 11:04:59 FileKit REPORT Utility 86

The input value (SQL Query statement) may be typed and edited as required. The statement may stream over several
consecutive lines of the display and Text Editor primary and line commands used to insert, delete, copy, move, replicate
format and navigate the SQL statement text. (See publication "FileKit Text Editor" for details.)

When the view is closed (F3), the consecutive lines of text are joined together so that only a single blank character exists
between the last non-blank character of a line and the first (blank or non-blank) character of the line that follows. Trailing
blank lines are truncated.

REPORT Execution DB2 SQL Expanded View

2024/09/02 11:04:59 FileKit REPORT Utility 87

DB2 Result Table View

Figure 20. DB2 SQL Query Statement - Result Table view.

Overview:

The result table view is a FileKit Data Editor browse of the DB2 result table rows fetched on execution of an SQL Query
statement. The SQL statement may have been supplied directory via an SQL input file or SQL panel input field, or may have
been dynamically generated by FileKit.

The table rows are mapped by an SDO structure generated by FileKit from the SQLDA returned by DB2 on execution of the
SQL Query. The rows are formatted using this SDO and displayed in columns.

This window provides a view of the rows that will be passed for processing by the REPORT Utility when it is executed.

REPORT Execution DB2 Result Table View

2024/09/02 11:04:59 FileKit REPORT Utility 88

SMF Report

Figure 21. SMF Records REPORT Utility Panel (=11.4).

Overview:

The SMF Formatted Record Report Utility panel (ZZSGSMFR) is the FileKit display interface to the REPORT Utility where
input is to be sourced from an IBM System Management Facilities (SMF) data set, library member or HFS/ZFS file.

The SMF record input may be read from a data source (data set) which contains the output from the SMF DUMP tool
(IFASMFDP) or it may be read directly from an SMF log data set (typically a DSN of the format "SYS1.xxxx.MANx)"). Note
that, SMF records read directly from the System Logger is not supported.

To open the "SMF Record Report Utility" panel, first select option 11. "Print/Report" from the FileKit primary options menu to
open the "Print/Report Features" menu and then select option 4. "SMF Report". Alternatively, simply enter the primary
command "SMFRPT" or fast path "=11.4" from any FileKit command prompt.

Primary Commands:

In addition to commands CLI (or CMX), Edit and JCL which are common to each REPORT utility panel, the Formatted
Record Report Utility panel supports the following primary commands:

BInput
Open a Data Editor window view to browse the input SMF records data set, library member or HFS/ZFS file
specified in the SMF Dataset DSN/Path/Member panel input fields. The record data in the browse display will be
formatted using a basic (non-segmented) layout that maps only header fields and is applied to all SMF records
types. See "Basic Layout Browse (SMFBB)" in the publication "FileKit SMF Utilities".

Input
Open a Data Editor window view to browse the input SMF records data set, library member or HFS/ZFS file
specified in the SNF Dataset DSN/Path/Member panel input fields. The record data in the browse display will be
formatted using full (segmented) layouts, one for each SMF record type and sub-type. See "Full Layout Browse
(SMFB)" in the publication "FileKit SMF Utilities".

Panel Input Fields:

By default, field entries are populated with arguments and options that were entered the last time the panel was used.

Report Definition:
Report definition input fields are common to each of the REPORT Utility panels. See "Report Panels" for a
description of use of the Report Definition fields.

SMF Dataset:
Input fields which together identify an existing sequential or VSAM data set, GDG relative generation, HFS/ZFS file
or PDS/PDSE library member containing the SMF data records from which the report is generated. This data

REPORT Execution SMF Report

2024/09/02 11:04:59 FileKit REPORT Utility 89

source will override the input data source provided in the INPUT section of the report definition.

Execute primary command INPUT (or I) to browse the input using full SMF record layouts, or BINPUT (or BI) to
browse the input using the single, basic SMF record layout.

DSN/Path>
Identifies the fully qualified data set name of a sequential, VSAM, GDG or library data set or the file path
of an HFS/ZFS file. An HFS/ZFS file path may be specified in full from the root directory or as path
relative to the user's OMVS present working directory (displayed using primary command USS PWD).

Data set names beginning with "." (dot) will be treated as having the user's DSN prefix as defined by the
User INI variable System.UserDSNPrefix.

A selectable list of data sets or HFS/ZFS files will be presented if the value entered contains wildcards
characters "*" (asterisk) or "%" (percent).

Member>
If the DSN/Path> field contains the DSN of a PDS/PDSE library, then this field specifies the name of a
library member. Otherwise, if DSN/Path> contains the DSN of a GDG, then this field specifies the relative
generation number of a GDS (e.g. 0, -1, -10).

For a library data set, a selectable list of members will be presented if no member name is specified or a
member name mask is entered. i.e. a member name containing wildcards characters "*" (asterisk) and/or
"%" (percent). For a GDG, the relative generation 0 is used if no value is entered.

Record Selection:
Fields which specify selection criteria by which input SMF data records may be filtered. Only records that satisfy
the specified selection criteria are selected for reporting.

See Record Filtering for full details on the relationship between input limit, output limit and content match criteria.

Type(s)>
The Type(s)> field is used to filter records based on the content of a record type field (zRTY) that exists in
the header of all SMF records. Furthermore, it may be used to filter records based on a sub-type value
found in the zSTY header field of certain SMF record types.

Type(s)> field input specifies one or more comma separated SMF record type identification values. These
values may each be expressed as an SMF record type (rectype), an SMF record type range
(rectype:rectype), or as an SMF record type with sub-type (rectype-subtype or rectype#subtype).

Specifying SMF record type identification values will override values specified by the SMFTYPES option
in the report definition for SMF Record Type matching.

A description of each of the different SMF record type identification values is documented in SMF Type
Values under "Record Filtering".

If an SMF record contains a match on any of the supplied SMF record type identification values, then
SMF Record Type matching will return a true result (1). Otherwise, if no match is found for any of the
supplied values, a false result (0) is returned.

SMF Record Type matching is one of the content match criteria for SMF record filtering. If a true result is
returned, then the SMF record will be passed for REPORT processing only if at least one of the following
is true:

No other SMF content match criteria is specified.1.
The SMF content match criteria logical operation is "OR".2.
All other specified SMF content match criteria each return a true result.3.

TYPES and other content match criterion are invalid if a filter expression is provided via the FILTER
section of the report definition. If both a FILTER section and a TYPES specification exists, then the error
message ERR066E is returned.

In the following example, a true result will be returned if the input SMF record type (zRTY field value) is 70
(any sub-type), if the SMF record type is 72 with sub-type (zSTY field value) of 3, or if the SMF record
type is 62, 63 or 64.

Types(s)> 70, 72#3, 62:64

Lo-Date/Time>
The Lo-Date/Time> input field value specifies a complete or partial absolute timestamp, or a negative
number of days that corresponds to a timestamp value which is relative to the current date. This value will
override a value specified by the SMFDATELO option in the report definition.

Absolute and Relative timestamp specifications are described in detail by timestamp values under
"Record Filtering".

The start of every SMF record contains a common header which includes a timestamp (date and time) at
which the record was written to the SMF log (zTME). If a low date/time threshold is specified, then only
those SMF records with a timestamp later than or equal to this date and time will be passed to SMF
content match criteria record filtering.

REPORT Execution SMF Report

2024/09/02 11:04:59 FileKit REPORT Utility 90

An absolute timestamp specification may be truncated to a minimum of 5 bytes ("yyyy/") in which case the
truncated numeric digits will be set to "0". For example, "2018/09" is treated as
"2018/09/00 00:00:00.00".

A relative timestamp, specified as number of days before the current date, will correspond to a date only.
For example, if the current date is 2019/11/13 then "-28" would be equivalent to
"2019/10/16 00:00:00.00".

Hi-Date/Time>
The HI-Date/Time> input field value specifies a complete or partial absolute timestamp, or a negative
number of days that corresponds to a timestamp value which is relative to the current date. This value will
override a value specified by the SMFDATEHI option in the report definition.

Absolute and Relative timestamp specifications are described in detail by timestamp values under
"Record Filtering".

The start of every SMF record contains a common header which includes a timestamp (date and time) at
which the record was written to the SMF log (zTME). If a high date/time threshold is specified, then only
those SMF records with a timestamp earlier than or equal to this date and time will be passed to SMF
content match criteria record filtering.

An absolute timestamp specification may be truncated to a minimum of 5 bytes ("yyyy/") in which case the
truncated numeric digits will be set to "9". For example, "2019/09/22 18" is treated as
"2019/09/22 18:99:99.99".

A relative timestamp, specified as number of days before the current date, will correspond to a date only.
For example, if the current date is 2020/03/05 then "-5" would be equivalent to
"2020/02/29 99:99:99.99" since 2020 is a leap year.

Input Limit>
The Input Limit> input field value specifies the maximum number of records that may be read from the
input file. This value will override a value specified by the ILIM option in the report definition.

Each input record is processed sequentially until this input record threshold is reached.

The input limit includes records which may subsequently be excluded from REPORT processing by a filter
clause specified via a FILTER section in the report definition or, alternatively, via specification of content
match criteria and/or High/Low date threshold values.

An input limit of "0" (zero) implies no input record limit and is set by default when no input limit is supplied
and no ILIM option is set in the report definition.

Output Limit>
The Output Limit> input field value specifies the maximum number of detail line records that may be
written to the output report. This value will override a value specified by the OLIM option in the report
definition.

Once the number of output report detail lines reaches this limit, no further input records will be processed.

An output limit of "0" (zero) implies no output record limit and is set by default when no OLIM operand
value is supplied and no OLIM option is set in the report definition.

Find String>
The Find String> field specifies one or more comma separated search string values. These values will
override values specified by the FIND option in the report definition for Unformatted Record Find String
matching.

The format of a find search string is described by search values under "Record Filtering".

If a match on any of the search strings is located at any position within an unformatted input record, then
Unformatted Record Find String matching will return a true result (1). Otherwise a false result (0) is
returned.

Unformatted Record Find String matching is one of the content match criteria for SMF record filtering. If a
true result is returned, then the SMF record will be passed for REPORT processing only if at least one of
the following is true:

No other SMF content match criteria is specified.1.
The SMF content match criteria logical operation is "OR".2.
All other specified SMF content match criteria each return a true result.3.

Unformatted Record Find String matching and other content match criterion are invalid if a filter
expression is provided via the FILTER section of the report definition. If both a FILTER section and a find
string specification exists, then the error message ERR066E is returned.

For example, the following will set a true condition if one of the strings "SYS1.MACLIB", "SYS1.MIGLIB",
"SYS1.MODGEN" or "SYS1.MSGEN" (upper or lower case) exists at any location within the unformatted
record.

REPORT Execution SMF Report

2024/09/02 11:04:59 FileKit REPORT Utility 91

Find String> SYS1.MACLIB, SYS1.MIGLIB, SYS1.MODGEN, SYS1.MSGEN

The panel entry field for Field String> displays only the first 45 characters of any input. To enter or
display search values that extend beyond this display length, position the cursor in the input field area and
press shift-F2 (EXPAND). A Text Editor window will be displayed allowing entry of FIND search values
that may stream multiple text edit lines.

User Id>
The User Id> field is used to filter records based on the content of a user name field (zUserId) that exists
at a fixed location within certain SMF records. This fixed position may be different for each of the SMF
record types. The following SMF record types are those that contain a zUserId field:

004
005
006
010

014
015
017
018

020
025
026

030
032
034

035
036
040

042
060
061

062
063
064

065
066
067

068
069
080

110
118
119

User Id> field input specifies one or more comma separated user name search values. These user name
values will override values specified by the SMFUSERID option in the report definition for SMF Record
User Name matching.

A user name value may be specified as an unquoted, quoted or character literal string and may contain
one or more wildcard characters as described by search values under "Record Filtering".

Unless the specified user name value contains an asterisk ("*") wildcard, which represents zero or more
occurrences of any character, then the value will be truncated or padded with blanks to a length of 8
characters. Furthermore, if no percent ("%") or asterisk ("*") wildcards are specified and the value is
expressed as an unquoted or quoted string, then all alpha characters in the string will be upper cased.
For example, if SMF records contain a zUserId field value "ABC", "ABC1", "ABCXXX" and "XABC" then
"USERID(abc)" would match "ABC" only, "USERID(abc*)" would match "ABC", "ABC1" and "ABCXXX",
"USERID(%abc)" would match "XABC" only and "USERID(*abc*)" would match all 4 values.

If an SMF record zUserId field contains a match on any of the supplied user name values, then SMF
Record User Name matching will return a true result (1). Otherwise, if no match is found for any of the
supplied values or the SMF record does not contain a zUserId field, then a false result (0) is returned.

SMF Record User Name matching is one of the content match criteria for SMF record filtering. If a true
result is returned, then the SMF record will be passed for REPORT processing only if at least one of the
following is true:

No other SMF content match criteria is specified.1.
The SMF content match criteria logical operation is "OR".2.
All other specified SMF content match criteria each return a true result.3.

Note that SMF Record User Name matching and other content match criterion are invalid if a filter
expression is provided via the FILTER section of the report definition. If both a FILTER section and a user
name specification exists, then the error message ERR066E is returned.

In the following example, a true result will be returned if the SMF record has a zUserId field that contains
a user name of any length up to a maximum of 8 characters ending with 1, or a user name beginning with
"ABC" followed by any single character followed by "DEFG".

User Id> *1, ABC%DEFG

Job Name>
The Job Name> field is used to filter records based on the content of a job name field (zJobName) that
exists at a fixed location within certain SMF records. This fixed position may be different for each of the
SMF record types. The following SMF record types are those that contain a zJobName field:

004
005
006

010
014
015

017
018
020

025
026
030

034
035
036

040
042
060

061
062
063

064
065
066

067
068
069

080
110
118

Job Name> field input specifies one or more comma separated job name separated job name search
values. These job name values will override values specified by the SMFJOBNAME option in the report
definition for SMF Record Job Name matching.

A job name value may be specified as an unquoted, quoted or character literal string and may contain
one or more wildcard characters as described by search values under "Record Filtering".

Unless a specified job name contains an asterisk ("*") wildcard, which represents zero or more
occurrences of any character, then the job name value will be truncated or padded with blanks to a length
of 8 characters. Furthermore, if no percent ("%") or asterisk ("*") wildcards are specified and the job name
is an unquoted or quoted string, then all alpha characters in the string will be upper cased.

If an SMF record zJobName field contains a match on any of the supplied job name values, then SMF
Record Job Name matching will return a true result (1). Otherwise, if no match is found for any of the
supplied jobname values or the SMF record does not contain a zJobName field, then a false result (0) is
returned.

REPORT Execution SMF Report

2024/09/02 11:04:59 FileKit REPORT Utility 92

SMF Record Job Name matching is one of the content match criteria for SMF record filtering. If a true
result is returned, then the SMF record will be passed for REPORT processing only if at least one of the
following is true:

No other SMF content match criteria is specified.1.
The SMF content match criteria logical operation is "OR".2.
All other specified SMF content match criteria each return a true result.3.

Note that SMF Record Job Name matching and other content match criterion are invalid if a filter
expression is provided via the FILTER section of the report definition. If both a FILTER section and a job
name specification exists, then the error message ERR066E is returned.

In the following example, a true result will be returned if the SMF record has a zJobName field that
specifically contains a job name "RSHD", contains a job name beginning with "GIM" or any job name of
length 5.

Job Name> RSHD, GIM*, %%%%%

System Id>
The System Id> field is used to filter records based on the content of a system identifier field (zSID) that
exists in the header of all SMF records.

System Id> field input specifies one or more comma separated system identification search values.
These values will override values specified by the SMFSID option in the report definition for SMF Record
System Id matching.

A system identifier value may be specified as an unquoted, quoted or character literal string and may
contain one or more wildcard characters as described by search values under "Record Filtering".

Unless the specified system identifier value contains an asterisk ("*") wildcard, which represents zero or
more occurrences of any character, then the value will be truncated or padded with blanks to a length of 4
characters. Furthermore, if no percent ("%") or asterisk ("*") wildcards are specified and the value is
expressed is an unquoted or quoted string, then all alpha characters will be upper cased.

If an SMF record zSID field contains a match on any of the supplied system identifier values, then SMF
Record System Id matching will return a true result (1). Otherwise, a false result (0) is returned.

SMF Record System Id matching is one of the content match criteria for SMF record filtering. If a true
result is returned, then the SMF record will be passed for REPORT processing only if at least one of the
following is true:

No other SMF content match criteria is specified.1.
The SMF content match criteria logical operation is "OR".2.
All other specified SMF content match criteria each return a true result.3.

Note that SMF Record System Id matching and other content match criterion are invalid if a filter
expression is provided via the FILTER section of the report definition. If both a FILTER section and
system identifier specification exists, then the error message ERR066E is returned.

In the following example, a true result will be returned if the zSID field contains a system id value "XS1", a
value beginning with "S0" followed by any single character followed by "1", or a value of up to 4
characters in length ending in "Z".

System Id> 'xs1', S0%1, '*Z'

Logic: AND | OR
The Logic: field input specifies the logical operation ("AND" or "OR") to be used when determining the
result of content match criteria record filtering. This logical operation value will override a value specified
by the SMFLOGIC option in the report definition.

The logical operation is used to combine the Boolean values (true or false) returned by each of the
specified content match criteria elements:

Unformatted Record Find String matching⋅
SMF Record Job Name matching⋅
SMF Record System Id matching⋅
SMF Record Type matching⋅
SMF Record User Name matching⋅

Content matching criteria elements may be specified in the report definition input, and/or passed to the
REPORT utility via panel input fields: Type(s), Find String, User Id, Job Name and System Id.

The "AND" or "OR" logical operation is performed between each of the Boolean values returned by the
specified content matching criteria to produce an overall true (1) or false (0) result. If the overall result is
true, the record satisfies the content match criteria and is passed to REPORT generation processing.

If logical operation AND is used then the result returned by all of the content checking criterion elements
specified for the current REPORT execution must be 1 (i.e. true). If logical operation OR is used then only
one of the values returned by the content checking criterion elements must be 1 (true) in order to return a
true result for the record.

REPORT Execution SMF Report

2024/09/02 11:04:59 FileKit REPORT Utility 93

Note that other SMF record filtering controlled by high date/low date thresholds and input record limit,
does not form part of the content checking criteria and so is not affected by the logical operation.

Options:
Option input fields Run Type>, Output Type> and Page Depth> are common to each of the REPORT Utility
panels. See "Report Panels" for a description of use of these Option fields.

Format> ONLINE | OFFLINE
ONLINE indicates that the SMF dataset is in the format as written directly by SMF to the SMF log
datasets (SYS1.xxxx.MANx). Note that FileKit does not support reporting on SMF records directly from
the System Logger.

ONLINE datasets include a 4-byte record descriptor word (RDW) prefix at the start of each record, so
record-type field mapping must be offset by this amount.

OFFLINE indicates that the SMF dataset is the format as written by the SMF DUMP tool (IFASMFDP)
which does not include a 4-byte (RDW) record prefix.

REPORT Execution SMF Report

2024/09/02 11:04:59 FileKit REPORT Utility 94

Command Line Interface

The REPORT utility execution may be started using the FileKit primary command, REPORT.

The REPORT command may be passed to the FileKit command processor via one of the following:

Entered at any FileKit window command prompt.1.
As a line of text displayed using the FileKit Text Editor. (See Command File Execution.)2.
As SDEIN input to the FILEKITB (FileKit batch) program. (See Batch Execution.)3.

Command File Execution

If the utility is to be executed in the FileKit foreground environment, the REPORT command and its operands may be saved
as text in a file (data set or library member) and started using the FileKit command execution facility. This involves placing
the cursor on the text of the command in a Text Edit view of the file and then pressing the "Action" key (shift-F4 by default).

The user's personal "Home" file (edited using option 4 in the Primary Option menu) is created the first time the user starts
FileKit. It exists to be updated by the user with useful or commonly used primary commands for execution using the "action"
key. Because the file contains only text, it may also include any accompanying notes or comments about the commands.

To prime the command for execution using FileKit's command execution facility, it must be preceeded by a "less than"/"left
chevron" symbol ("<"). Furthermore, the command's text may stream over multiple, consecutive file records. To do this, the
command continuation "backslash" symbol ("\") must be specified as the last non-blank character of each record containing
text that is to be continued on the next record.

For Example:

-USER123.FILEKIT.CMX 32752 V SEQ Size=639 Alt=0,0;0 -+x
Command> Scroll> Csr
 <---+----1----+----2----+----3----+----4----+----5----+----6----+----7---
00001 ** USER123.FILEKIT.CMX *** L=095 --- 2020/02/13 18:04:10 (USER123)
00002
00003 | Execute the REPORT Utility for SMF record input
00004 | ---
00005 |
00006 | The following command reports on SMF TCP/IP 119 records and limits
00007 | the output to only 10 records of each subtype:
00008
00009 <REPORT RUN PRINT RPTDEF('NBJ.FILEKIT.RPT(SMF119)') \
00010 SMF-INPUT-BEG CBL.SMF.GDG(-1) OLIM(10) \
00011 SMF-INPUT-END
00012

REPORT Execution Command Line Interface

2024/09/02 11:04:59 FileKit REPORT Utility 95

Batch Execution

If the utility is to be executed in batch, the REPORT command and its operands must be passed to the FILEKITB (FileKit
Batch) program via the SDEIN DD input.

A template batch job containing relevant JCL statements and REPORT command may be generated by selecting run type
option "B" (Batch) in any of the REPORT Utility panels provided for general formatted record reports, SMF record reports or
DB2 table reports.

For Example:

-USER123.JCL(REP00004) 80 F PDSE Size=69 Alt=0,0;25 -+x
Command> Scroll> Csr
 <---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
00001 //U123JOB JOB ,,CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1),NOTIFY=&SYSUID
00002 //*
00003 //* ---
00004 //* REPORT: FileKit SMF Report Utility - 2019/11/07 12:00
00005 //* ---
00006 //*
00007 //REPORT EXEC PGM=FILEKITB
00008 //STEPLIB DD DISP=SHR,DSN=CBL.INST.CBL19293.SZZSLOAD
00009 //*
00010 //* --------- SORT work files beg -------------------------------------
00011 //SORTIN DD DISP=(NEW,PASS),SPACE=(TRK,(300,300)),
00012 // DCB=(RECFM=VB,LRECL=1024,BLKSIZE=0,DSORG=PS)
00013 //SORTOUT DD DISP=(NEW,PASS),SPACE=(TRK,(300,300)),
00014 // DCB=*.SORTIN
00015 //SYSIN DD DISP=(NEW,PASS),SPACE=(TRK,(001,001)),
00016 // DCB=(RECFM=FB,LRECL=0080,BLKSIZE=0,DSORG=PS)
00017 //SYSOUT DD SYSOUT=*
00018 //* --------- SORT work files end -------------------------------------
00019 //*
00020 //MYREPORT DD *
00021 HEAD:
00022 #TODAY \ "z/OS TCP Daily Connections Report" \ "PAGE:" #PAGE
00023
00024 COLUMNS:
00025 SMF119#02_TCPIP_Statistics.zSID 'SysID'
00026 SMF119#02_Identification.zStack 'Stack'
00027 SMF119#02_TCP_Connection_Termination.zRName 'Resource'
00028 SMF119#02_TCP_Connection_Termination.zConnectStart 'Start'
00029 SMF119#02_TCP_Connection_Termination.zConnectEnd 'End'
00030 SMF119#02_TCP_Connection_Termination.zInBytes 'Bytes In' 10 R
00031 SMF119#02_TCP_Connection_Termination.zOutBytes 'Bytes Out' 10 R
00032 SMF119#02_TCP_Connection_Termination.zTermCode 'Termination Desc'
00033
00034 SORT:
00035 SMF119#02_Identification.zStack
00036 SMF119#02_TCP_Connection_Termination.zRName
00037 SMF119#02_TCP_Connection_Termination.zConnectStart
00038
00039 BREAK:
00040 SMF119#02_TCP_Connection_Termination.zRName
00041
00042 FILTER:
00043 SMF119#02_TCP_Connection_Termination.zTermCode <> 'App_Close'
00044 /*
00045 //*
00046 //* --------- Optional overrides beg ----------------------------------
00047 //ZZSUSERI DD DUMMY Deactivate USER=USER123 INI file options.
00048 //*ZZSUSERI DD DISP=SHR,DSN=USER123.FILEKIT.INI
00049 //*SDESDO DD DISP=SHR,DSN=CBL.FILEKIT.SITE.SDO
00050 //* DD DISP=SHR,DSN=CBL.INST.CBL19293.SZZSDIST.SDO
00051 //* --------- Optional overrides end ----------------------------------
00052 //*
00053 //SDEPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=0133)
00054 //SDEOUT DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=1024)
00055 //SDEIN DD *
00056
00057 REPORT RUN PRINT
00058 RPTDEF(DD=MYREPORT)
00059 OUTPUTDD(SDEOUT)
00060 SMF-INPUT-BEG
00061 CBL.SMF.IBMSAMP.ZOSR22
00062 OFFLINE
00063 ILIM(050000)
00064 SMF-INPUT-END ;
00065
00066 /*
00067 * * * End of File * * *

JCL DD Statements

The executable program ZZSSMAIN (alias FILEKITB) is included by default in the CBL Product Suite load library (installed
into SMP/E target library "prefix.SZZSLOAD").

REPORT Execution Command File Execution

2024/09/02 11:04:59 FileKit REPORT Utility 96

The FILEKITB program is the batch interface to FileKit and may be used to execute any of FileKit's utility primary
commands. This includes utilities such as File copy (FCOPY), File Search and Update (FSU), File Compare (COMPFILE)
as well as the Report utility (REPORT). PGM=FILEKITB must be specified on the JCL EXEC statement of any batch job
step that executes a FileKit utility.

A number of mandatory and optional JCL statements exist in batch jobs that execute the FILEKITB program. Additional
statements may also be necessary for execution of the REPORT utility. This section itemises each of these JCL statements
and describes their effect on REPORT utility batch processing.

SDEIN

SDEIN input is mandatory and contains the REPORT command to be passed to the FileKit command processor. The
SDEIN input is not restricted to the REPORT command but may be used to execute any FileKit command or edit REXX
macro in the batch environment.

Multiple commands may be specified in the same SDEIN input. If so, each command is executed in the sequence
provided when execution of the previous command completes.

A FileKit command map span a number of consecutive input records and is only terminated by an unquoted semi-colon
(";") symbol or the end of SDEIN input. Furthermore, SDEIN input may contain comment text which is imbedded within
command string. Commment text occurs within unquoted slash-asterisk ("/*") and asterisk-slash ("*/") symbol pairs.

For example:

 //SDEIN DD *
 REPORT RUN PRINT PAGEDEPTH(74)
 RPTDEF('USER123.FILEKIT.RPT(ZZST1RPT)') /* Report Definition. */

 SDE-INPUT-BEG /* Structered input section. */
 USER123.SELCTRN.ZZST1DAT /* Input Data Records. */

 SDO-INPUT-BEG /* Structure object section. */
 COBOL USER123.COPYLIB.COBOL(ZZST1CPC) /* Structure Mapping. */
 SDO-INPUT-END

 SDE-INPUT-END ;
 /*

SDEOUT

SDEOUT is optional and, if present, will contain the output report text generated by the REPORT utility if REPORT
operand OUTDD is not specified or has is specified as OUTDD(SDEOUT).

If REPORT OUTDD(ddname) is specified, then the output report is written to ddname. If OUTDD is not specified and
SDEOUT is not allocated, the output will be directed to SDEPRINT.

Note that report output records will be truncated if the length of the text exceed the defined LRECL value (or LRECL-4 if
RECFM=V).

SDEPRINT

SDEPRINT is mandatory and will contain the FileKit execution diagnostic messages. If SDEIN is not allocated, it will also
contain the output report text.

SDESDO

SDESDO is optional and specifies the SDO library path from which FileKit distributed SDO structure members may be
found. In particular, SDO structure members used to map SMF records.

If SDESDO is not allocated, then SMF record mapping SDO members must exist in the library "prefix.SZZSDIST.SDO",
where prefix is the library DSN prefix of the installation libraries (i.e. the SMP/E install target libraries).

SYSIN

SYSIN is mandatory if the REPORT utility input definition control statements include a SORT section.

The REPORT utility utilises the local SORT (DFSORT or SYNCSORT) program to sort the report detail records. The
SYSIN input contains the SORT control statements which are written by the REPORT utility and then passed to the
SORT program.

REPORT Execution JCL DD Statements

2024/09/02 11:04:59 FileKit REPORT Utility 97

SYSPRINT

SYSPRINT is mandatory if the REPORT utility input definition control statements include a SORT section.

The SYSPRINT output will contain diagnostic messages (if any) written by the SORT utility during execution.

SORTIN

SORTIN is mandatory if the REPORT utility input definition control statements include a SORT section.

The SORTIN input contains the data records written by the REPORT utility and then passed to the SORT program for
sorting.

SORTOUT

SORTOUT is mandatory if the REPORT utility input definition control statements include a SORT section.

The SORTOUT output will contain the sorted data records written by the SORT utility.

ZZSUSERI

ZZSUSERI is optional and specifies the DSN of the User INI file.

Like FileKit, when FILEKITB starts it establishes customised processing options from the site wide configuration data set
(the SITE INI file). The DSN of the SITE INI options is identified by option INamDSN in the CBL Product Suite options
module, CBLNAME.

Having established the site-wide options, processing option overrides set by the user's personal FileKit options data set
(the USER INI file) are applied. In batch, the active user will be the USER=userid value specified on the JOB statement
which defaults to be the userid of the submitting TSO/E user or job. If ZZSUSERI is not allocated, the DSN of the USER
INI file is determined by the USERINIFILE option in the SITE INI file. This option specifies a DSN mask value based on
the current userid.

To ensure an FILEKITB is user independent, a ZZSUSERI DD statement should be included and allocated to DUMMY or
an existing INI file DSN.

ddname

Additional DD statements may be necessary if REPORT command operands reference DD name arguments. For
example, DD=ddname may be specified for RPTDEF, OUTPUTDD, SMF-INPUT and SDE-INPUT operands.

For SMF-INPUT and SDE-INPUT, DD=ddname may be used to specify a ddname allocated to an input DASD or TAPE
data set, or even a concatenation of data sets.

REPORT Execution JCL DD Statements

2024/09/02 11:04:59 FileKit REPORT Utility 98

REPORT Command

Overview:
The REPORT primary command is the command line interface to the REPORT utility.

In addition to executing the utility in the foreground or batch to generate report output, the REPORT command may be
executed in the foreground to:

List members of the default report definition source library.1.
Edit and optionally initialise a source report definition member.2.
From a Data Editor view of formatted data, add COLUMN section definitions to a report definition member for all
fields in the focus line that have been selected for display. (The focus line is the line on which the cursor is
positioned.)

3.

Generate a JCL job to in order to generate the report utility in batch.4.

A REPORT command and operands may be generated for values entered in REPORT panel fields by selecting "C" (CLI) in
the "Run Type" option field.

If REPORT is executed with no operands, the "Print/Report Features Menu" panel is opened allowing for selection of the
required REPORT utility panel specific to input data type.

Examples:

Example 1. List Report Definition Members:

The following REPORT command may only be executed in the FileKit foreground.

 REPORT L

Opens a Library Member List window to display all members of the user's default report definitions library.

Example 2. Create Report Column Definitions from the Current Formatted Record View:

The following REPORT command may only be executed in the foreground whilst using the FileKit Data Editor to display
formatted records.

 REPORT ADD USER123.FILEKIT.RPT(MUSX301)

Edit the report definition member "USER123.FILEKIT.RPT(MUSX301)" and add column definitions for every record field
displayed in the focus line of the current Data Editor view. The generated column definitions may be included in the
COLUMNS section of the report definition member.

Example 3. Formatted Records Report:

The following REPORT command example is as it might appear in a text file for execution in the foreground using the FileKit
ACTION key. See Command File Execution for details.

 <REPORT RUN RPTDEF(USER123.FILEKIT.RPT(MUSX301)) \
 SDE-INPUT-BEG \
 USER123.SOURCE.DATA \
 \
 SDO-INPUT-BEG \
 COBOL USER123.COPYBOOK.COBOL(T2VF002) \
 SDO-INPUT-END \
 \
 OLIM(100) \
 SDE-INPUT-END

Using the report definition member "USER123.FILEKIT.RPT(MUSX301)", produce a report of no more than 100 detail lines
from records in dataset "USER123.SOURCE.DATA". The input records will be formatted using a FileKit SDO structure
generated from COBOL copybook member "USER123.COPYBOOK.COBOL(T2VF002)". Because the REPORT command
is to be executed in the foreground, no OUTDD is required. The report output will not be written to a DASD data set but will
be displayed in a FileKit Data Edit window view instead. The report may be subsequently saved to DASD.

REPORT Execution REPORT Command

2024/09/02 11:04:59 FileKit REPORT Utility 99

Example 4. SMF Record Report:

The following REPORT command example is as it might appear in DD SDEIN input to the FILEKITB (FileKit batch) program.

 REPORT RUN RPTDEF(DD=RPTCTL) OUTDD(RPTOUT)
 SMF-INPUT-BEG
 USER123.SMFSAMP.SMF030
 TYPES(30-5)
 DATELO(2019/09/15 13:00)
 DATEHI(2019/09/20)
 SMF-INPUT-END

Using the report definition input allocated to DDname RPTCTL, produce a report of all SMF Record-Type 30 SubType 5
records contained in dataset "USER123.SMFSAMP.SMF030" provided they fall within the DATELO/DATEHI timestamp
range. The generated report is written to the data set allocated to DDname RPTOUT.

Example 5. SMF Record Report with Filters:

The following REPORT command example is as it might appear in DD SDEIN input to the FILEKITB (FileKit batch) program.

 REPORT RUN RPTDEF(DD=RPTCTL) OUTDD(RPTOUT)
 SMF-INPUT-BEG
 DD=SMFIN
 TYPES(30)
 JOBNAME(NBJ*,USER%%%)
 FIND('CBL.SMFSAMP.')
 LOGIC(AND)
 DATELO(2020/01/01)
 DATEHI(2020/03/01 23:59:59.99)
 SMF-INPUT-END

Using the report definition input allocated to DDname RPTCTL, produce a report of all records of SMF Record-Type 30 (any
SubType) contained in the dataset(s) allocated to DD SMFIN provided they satisfy all of the following filter conditions:

Record was written within the DATELO/DATEHI timestamp range.1.
Record has a job name value beginning "NBJ" or a job name of length 7 characters beginning "USER".2.
Record contains the search string "CBL.SMFSAMP." at any position. (DSN qualifiers).3.

DD SMFIN may be allocated to a DASD or TAPE data set, or a concatenation of data sets.

The generated report is written to the data set allocated to DDname RPTOUT.

Example 6. DB2 Table Report:

The following REPORT command example is as it might appear in DD SDEIN input to the FILEKITB (FileKit batch) program.

 REPORT RUN RPTDEF(DD=DB2CTL) OUTDD(DB2OUT)
 DB2-INPUT-BEG
 DB2 SSN(DBCG) DSN8C10.EMP
 DB2-INPUT-END

Using the report definition input allocated to DDname DB2CTL, produce a report of all rows in the sample DB2 table
"DSN8C10.EMP" on the local sub-system "DBCG". The generated report is written to the data set allocated to DDname
DB2OUT.

REPORT Execution REPORT Command

2024/09/02 11:04:59 FileKit REPORT Utility 100

Syntax:

 >>-- REPORT --+---+------><
 | |
 +--------------------------- report_ctl ----------------+
 | |
 +---- L -----------------+----------------+-------------+
 | | | |
 | +-- report_lib --+ |
 | |
 +--+- ADD ---+-----------+----------------+-------------+
 | | | | | |
 | +- E -----+ +-- report_ctl --+ |
 | | | |
 | +- NEW ---+ |
 | |
 +--+- BATCH -+-------------- | Options | ---------------+
 +- JCL ---+
 | |
 +- CMX ---+
 | |
 +- FGRND -+
 +- RUN ---+

Options:

 |--+----------------------------------+------------------------------------->
 | |
 +-- RPTDEF(-+- report_ctl -+-) --+
 (1) +- DD=ddrpt ---+
 (2)
 +-- OUTDD(SDEOUT) ----------+
 +-- PRINT ---+ +-- OUTDD(SDEPRINT) --------+
 | | | |
 >--+------------+---+--------------------+---+---------------------------+-->
 | | | | | |
 +-- BROWSE --+ +- PAGEDEPTH(nlines)-+ +-- OUTDD ----+- (ddout) ---+
 +-- CSV -----+ +-- OUTPUTDD -+
 +-- JSON ----+
 +-- XML -----+

 >--+---+------|
 | |
 +-- SMF-INPUT-BEG -------- | SMF Input | ------- SMF-INPUT-END --+
 | |
 +-- SDE-INPUT-BEG -------- | SDE Input | ------- SDE-INPUT-END --+
 | |
 +-- DB2-INPUT-BEG -------- | DB2 Input | ------- DB2-INPUT-END --+
 (3)

(1) RPTDEF is mandatory when running in BATCH.
(2) OUTDD(SDEOUT) if SDEOUT allocated. Otherwise, OUTDD(SDEPRINT) if running in batch, or no OUTDD operand if running in

foreground.
(3) SDE, DB2 or SMF input is mandatory unless running in the foreground and RUN is specified to generate a report on formatted

data in the current Data Editor view.

SMF Input:

 +- OFFLINE -+
 | |
 |--+----------------+--+-----------+--+---------------+-+---------------+--->
 | | | | | | | |
 +-- report_inp --+ +- ONLINE --+ +- ILIM(nrecs) -+ +- OLIM(nrecs) -+
 | |
 +-- DD=ddin -----+

 >--+---------------------------------+-+---------------------------------+-->
 | | | |
 +-- DATELO(-+- timestamp --+-) -+ +-- DATEHI(-+- timestamp --+-) -+
 +- -days ------+ +- -days ------+

 >--+--+---------------------|
 | |
 | (4) +---------------------+ +- LOGIC(OR) ---+ |
 | v | | | |
 +-----+---------------------+--+---------------+---+
 | | | |
 +- | Types Spec | ----+ +- LOGIC(AND) --+
 +- | System Spec | ---+
 +- | Username Spec | -+
 +- | Jobname Spec | --+
 +- | Search Spec | ---+

(4) Only 1 each of "types_spec", "system_spec", "username_spec", "jobname_spec" and "search_spec" may be specified.

REPORT Execution REPORT Command

2024/09/02 11:04:59 FileKit REPORT Utility 101

Types Spec:

 +---------- , ----------+
 v |
 |--- TYPES(--+-- rectype ----------+--) -------------------------------|
 | |
 +-- rectype:rectype --+
 | |
 +-- rectype-subtype --+
 +-- rectype#subtype --+

System Spec:

 +---------- , ----------+
 v |
 |----- SID(--+-- sid --------------+--) -------------------------------|

Username Spec:

 +---------- , ----------+
 v |
 |-- USERID(--+-- username ---------+--) -------------------------------|

Jobname Spec:

 +---------- , ----------+
 v |
 |- JOBNAME(--+-- jobname ----------+--) -------------------------------|

Search Spec:

 +---------- , ----------+
 v |
 |---- FIND(--+-- string -----------+--) -------------------------------|

SDE Input:

 |--+--------------+- SDO-INPUT-BEG -- | Structure Spec | -- SDO-INPUT-END -->
 | | (5)
 +- report_inp -+
 | |
 +- DD=ddin ----+

 >--+-------------------------------+--+---------------+-+---------------+---|
 | | | | | |
 +------- | Search Spec | -------+ +- ILIM(nrecs) -+ +- OLIM(nrecs) -+

(5) SDO-INPUT-BEG/SDO-INPUT-END with a structure specification must be omitted if the report definition includes a MAP section
to define input field mappings.

Structure Spec:

 |--+-+-------------+-------- sdo_name ----------------------+---------------|
 | +- STRUCTure -+ |
 | |
 +-+- HLAsm -----+-------- copybook_name -----------------+
 | +- COBOL -----+ |
 | +- PL1 -------+ |
 | +- ADAta -----+ |
 | +-------------------------+ |
 | v | |
 +--- SYMNAMes (-------+- SYMNAME_source --------+-) ---+

REPORT Execution REPORT Command

2024/09/02 11:04:59 FileKit REPORT Utility 102

DB2 Input:

 |--+-----------------+-+---+-->
 | | | |
 +- DB2 -+---------+ +------- table --------+---- | SQL Query Opts | --+
 | | | | |
 +- (ssn) -+ +------- view ---------+ |
 | |
 +- SQL (sql_query) --+--------------------------+
 | |
 +- SQL -- sql_file ----+

 >--+-+------------------------------+--+-------------------------------+-+-->
 | | | | | |
 | +-- FROM -+--------+- rownum --+ +-- FOR --- nrecs --+--------+--+ |
 | +- ROW --+ | +- ROWS -+ | |
 | | | |
 | +-- ILIM -- nrecs --------------+ |
 | |
 +---- SCROLL ---+

 >--+---------------+--|
 | |
 +- OLIM(nrecs) -+

SQL Query Opts:

 |--+------------------------+--+---+--|
 | | | |
 +- WHERE (where_clause) -+ +- ORDER -+------+--+- (order_by_clause) -+
 | +- BY -+ | |
 | | |
 +- SORT ------------+ |
 | |
 +- SORTIndex -+-- index_name --+----------+
 | |
 +-- Prime -------+

Parameters:

ADD | {BATCH|JCL} | CMX | E | {FGRND|RUN} | L | NEW

Operand that specifies the action to be performed by the REPORT command.

All actions are supported when REPORT is executed in the foreground. However, only action RUN may be used
when REPORT is executed in batch.

ADD Applicable only when executed within a Data Editor view of formatted records, "REPORT
ADD" provides a convenient method of populating a report definition input member with
column definitions based on fields within records being browsed or edited by the Data
Editor.

"REPORT ADD" will add one COLUMN definition statement to the report_ctl member for
each field displayed in the focus line of the Data Editor view. (i.e. The line on which the
cursor is positioned.)

The Data Editor primary command SELECT may be used to open the "Select Display Fields
for a Record Type" panel to select the fields for display and to specify the order in which
fields are occur within the display. Column definitions will reflect this selection and field
order.

A "COLUMNS:" section header and other required sections should be manually added to
report_ctl before using it as the report definition input to the REPORT utility.

BATCH
JCL

Generate a job stream containing JCL suitable for submission to batch.

The job comprises a single job step that executes the the FILEKITB (FileKit batch) program.
See "Batch Execution" for details on execution of the REPORT utility in a batch
environment.

CMX Generate a REPORT primary command in a temporary text display. This option is
supported purely for REPORT panel operation.

The REPORT panels silently generate and execute a REPORT primary command in order
to execute the REPORT utility. "REPORT CMX" is only sensible when executed via a panel
since executing a REPORT primary command to generate another, almost identical
REPORT primary command would be pointless.

E Edit the report definition source dataset or library member identified by report_ctl.

REPORT Execution REPORT Command

2024/09/02 11:04:59 FileKit REPORT Utility 103

FGRND
RUN

Execute the REPORT utility to generate the report using the report definition source
identified by the RPTDEF operand.

L Open a library member list to display the members in the report definition source library
specified by report_lib.

NEW Edit the report definition source dataset or library member identified by report_ctl and delete
the contents in preparation for writing a new report definition source.

This action is primarily for use in conjunction with "REPORT ADD" when the default report
definition source member "REPORT" is to be used for creating simple, one-off reports for
the data in the current Data Editor view.

BROWSE | CSV | JSON | PRINT | XML

Operand that specifies the format of report output to be generated

BROWSE Applicable only when executed in the foreground (not in batch), BROWSE will open a Data
Editor browse window to display only those record types and fields selected for reporting in
the COLUMNS and REQUIRED sections of the report definition input.

The BROWSE option allows use of report definitions as templates for browsing formatted
data. The browse view will display the values that would be extracted by the REPORT utility
for report generation. For this reason, the BROWSE format is also useful for testing new
report definitions.

Note that fields included in the report definition that are mapped by a secondary
record-type, will appear on the same line as fields mapped by the primary record-type
provided the secondary record-type is not specified in the REPEAT section. Because the
values of fields belonging to repeated record segments change for each segment
occurrence, they are not displayed on the primary record segment line.

CSV Generate Comma Separated Variable (CSV) output records for field values identified by
COLUMN statements in the report definition file.

JSON Generate JavaScript Object Notation (JSON) output records for field values identified by
COLUMN statements in the report definition file.

PRINT Generate a printed report output.
XML Generate eXtensible Markup Language (XML) output records for field values identified by

COLUMN statements in the report definition file.

DATEHI(timestamp | -days)

Applicable to SMF input only, DATEHI specifies a complete or partial absolute timestamp (timestamp), or a
negative number of days (-days) that corresponds to a timestamp value which is relative to the current date. This
value will override a value specified by the SMFDATEHI option in the report definition.

DATEHI must be entered between the SMF-INPUT-BEG and SMF-INPUT-END command line operands.

Absolute and Relative timestamp specifications are described in detail by timestamp values under "Record
Filtering".

The start of every SMF record contains a common header which includes a timestamp (date and time) at which the
record was written to the SMF log (zTME). If DATEHI is specified, only those SMF records with a timestamp earlier
than or equal to the DATEHI date and time will be passed to SMF content match criteria record filtering.

An absolute timestamp specification may be truncated to a minimum of 5 bytes ("yyyy/") in which case the
truncated numeric digits will be set to "9". For example, "DATEHI(2019/09/22 18)" is treated as
"DATEHI(2019/09/22 18:99:99.99)".

A relative timestamp, specified as number of days before the current date, will correspond to a date only. For
example, if the current date is 2020/03/05 then "DATEHI(-5)" would be equivalent to
"DATEHI(2020/02/29 99:99:99.99)" since 2020 is a leap year.

DATELO(timestamp | -days)

Applicable to SMF input only, DATELO specifies a complete or partial absolute timestamp (timestamp), or a
negative number of days (-days) that corresponds to a timestamp value which is relative to the current date. This
value will override a value specified by the SMFDATELO option in the report definition.

DATELO must be entered between the SMF-INPUT-BEG and SMF-INPUT-END command line operands.

Absolute and Relative timestamp specifications are described in detail by timestamp values under "Record
Filtering".

The start of every SMF record contains a common header which includes a timestamp (date and time) at which the
record was written to the SMF log (zTME). If DATELO is specified, only those SMF records with a timestamp later
than or equal to the DATELO date and time will be passed to SMF content match criteria record filtering.

REPORT Execution REPORT Command

2024/09/02 11:04:59 FileKit REPORT Utility 104

An absolute timestamp specification may be truncated to a minimum of 5 bytes ("yyyy/") in which case the
truncated numeric digits will be set to "0". For example, "DATELO(2018/09)" is treated as
"DATELO(2018/09/00 00:00:00.00)".

A relative timestamp, specified as number of days before the current date, will correspond to a date only. For
example, if the current date is 2019/11/13 then "DATELO(-28)" would be equivalent to
"DATELO(2019/10/16 00:00:00.00)".

DB2 [(ssn)]

Applicable to DB2 table input only, specification of DB2 is optional and is only necessary if used to identify a
specific DB2 sub-system.

If sepecified, DB2 must be entered between the DB2-INPUT-BEG and DB2-INPUT-END command line operands.

The (ssn) operand is optional and identifies the local DB2 sub-system name to which a connection will be made.
This will override an ssn value specified by DB2(ssn) in the INPUT section of the report definition.

Before a connection can be made to the DB2 sub-system, the FileKit DB2 plan must have been bound to that
sub-system.

Default for ssn is the DB2 sub-system name set in the FileKit DB2 Primary Options menu and saved in the User
INI file.

DB2-INPUT-BEG ... DB2-INPUT-END

The DB2-INPUT-BEG and DB2-INPUT-END operand pair indicates DB2 format REPORT utility input. The
operands also identify the start and end of a number of REPORT utility command line operands that are specific to
DB2 table processing. i.e. DB2 specific operands must be entered after DB2-INPUT-BEG and before
DB2-INPUT-END.

The REPORT utility uses FileKit functions to perform special processing for DB2 table input. Firstly, a connection is
made with the specified DB2 sub-system via the Call Attachment Facility. Therafter, the program prepares and
executes SQL statements to obtain information on and process the input DB2 result table. FileKit will also
automatically generate an SDO structure in order to map input DB2 result table rows.

Note that if the REPORT option in the report definition is specified, then this will dictate the REPORT input format.
If this option is SDE or SMF, then operands entered between DB2-INPUT-BEG / DB2-INPUT-END that are not
applicable to the specified REPORT input format are ignored.

FIND(string, ...)

Applicable to all input types except DB2 table input, the FIND operand specifies one or more comma separated
search values (string). These string values will override values specified by the FIND option in the report definition
for Unformatted Record Find String matching.

FIND must be entered between the SMF-INPUT-BEG and SMF-INPUT-END command line operands, or between
the SDE-INPUT-BEG and SDE-INPUT-END command line operands.

Note: Filtering of DB2 table rows based on its contents may be achieved using a WHERE clause in the SQL query
specified in the DB2 input operands.

The format of string is described by search values under "Record Filtering".

If a match on any of the FIND search strings is located at any position within an unformatted input record, then
Unformatted Record Find String matching will return a true result (1). Otherwise a false result (0) is returned.

Unformatted Record Find String matching is one of the content match criteria for SMF record filtering. If a true
result is returned, then the SMF record will be passed for REPORT processing only if at least one of the following
is true:

No other SMF content match criteria is specified.1.
The SMF content match criteria logical operation is "OR".2.
All other specified SMF content match criteria each return a true result.3.

For non-SMF input, no other content match criterion is supported. Therefore, a record will be passed for REPORT
processing if a true result is returned by Unformatted Record Find String matching.

For example, the following will set a true condition if one of the strings "SYS1.MACLIB", "SYS1.MIGLIB",
"SYS1.MODGEN" or "SYS1.MSGEN" (upper or lower case) exists at any location within the unformatted record.

FIND(SYS1.MACLIB, SYS1.MIGLIB, SYS1.MODGEN, SYS1.MSGEN)

FIND and other content match criterion are invalid if a filter expression is provided via the FILTER section of the
report definition. If both a FILTER section and a FIND specification exists, then error message ERR065E or
ERR066E is returned.

REPORT Execution REPORT Command

2024/09/02 11:04:59 FileKit REPORT Utility 105

FOR nrecs [ROWS]

Applicable to DB2 table input only, FOR nrecs ROWS specifies the maximum number of rows that may be fetched
from the DB2 result table. This will override an nrecs value specified by FOR nrecs ROWS in the INPUT section of
the report definition.

FOR nrecs ROWS must be entered between the DB2-INPUT-BEG and DB2-INPUT-END command line operands.

Note that, if an ILIM input limit value is specified, then this will override the nrecs value specified on FOR nrecs
ROWS. However, any nrecs value specified by ILIM or FOR will be ignored if DB2 operand SCROLL is also
specified to use a DB2 table scrollable cursor.

FROM [ROW] rownum

Applicable to DB2 table input only, FROM ROW rownum specifies the number of the input DB2 result table row
from which REPORT processing will start. This will override a row number value specified by FROM ROW rownum
in the INPUT section of the report definition.

FROM ROW rownum must be entered between the DB2-INPUT-BEG and DB2-INPUT-END command line
operands.

Rows that occur before the specified row number will be bypassed and not included in the number of rows (nrecs)
count identified by an input limit (ILIM) or FOR nrecs RECS specification.

Note that any specified rownum value will be ignored if DB2 operand SCROLL is also specified to use a DB2 table
scrollable cursor.

By default, REPORT processing starts from the first row of the result table.

ILIM(nrecs)

Specifies an input limit, the maximum number of records (or DB2 table rows) that will be read from the input data
source. This value will override a value specified by the ILIM option in the report definition.

ILIM must be entered between the DB2-INPUT-BEG and DB2-INPUT-END command line operands, or between
the SMF-INPUT-BEG and SMF-INPUT-END command line operands, or between the SDE-INPUT-BEG and
SDE-INPUT-END command line operands.

For DB2 table input, the specified ILIM value will take precedence over any FOR nrecs ROWS specified in DB2
operands of the REPORT command or in the INPUT section of the report definition. The input limit will determine
the number of rows fetched from the DB2 result table. Note, however, that any nrecs value specified by ILIM or
FOR will be ignored if DB2 operand SCROLL is also specified to use a DB2 table scrollable cursor.

Each input record or DB2 row is processed sequentially until the input record threshold (nrecs) is reached. At this
point, sorting occurs if a SORT section exists in the report definition, otherwise REPORT processing ends. When a
SORT section is not present, then REPORT processing may end before the input limit is reached if a specified
OLIM output limit threshold is reached first.

Where the input source is not a DB2 table, the input limit includes records which may subsequently be excluded
from REPORT processing by other record filtering techniques. For example, use of a FILTER section in the report
definition or, alternatively, specification of find search strings (FIND), high date (DATEHI) / low date (DATELO)
thresholds, or SMF record type (TYPES), job name (JOBNAME), system name (SID) or user name (USERID) field
matches.

ILIM(0) implies no input record limit and is set by default when no ILIM operand is supplied, no DB2 FOR nrecs
ROWS specification exists, and no ILIM option is set in the report definition.

JOBNAME(jobname, ...)

Applicable only to SMF input records, the JOBNAME operand specifies one or more comma separated job name
search values (jobname). These job name values will override values specified by the SMFJOBNAME option in the
report definition for SMF Record Job Name matching.

JOBNAME must be entered between the SMF-INPUT-BEG and SMF-INPUT-END command line operands.

A jobname value may be specified as an unquoted, quoted or character literal string and may contain one or
more wildcard characters as described by search values under "Record Filtering".

Unless jobname contains an asterisk ("*") wildcard, which represents zero or more occurrences of any character,
then the jobname value will be truncated or padded with blanks to a length of 8 characters. Furthermore, if no
percent ("%") or asterisk ("*") wildcards are specified and jobname is an unquoted or quoted string, then all alpha
characters in the string will be upper cased.

A number of SMF record types contain a job name field zJobName at a fixed location within the record data. This
fixed position may be different for each of the SMF record types. If an SMF record zJobName field contains a
match on any of the supplied jobname values, then SMF Record Job Name matching will return a true result (1).
Otherwise, if no match is found for any of the supplied jobname values or the SMF record does not contain a
zJobName field, then a false result (0) is returned.

REPORT Execution REPORT Command

2024/09/02 11:04:59 FileKit REPORT Utility 106

SMF Record Job Name matching is one of the content match criteria for SMF record filtering. If a true result is
returned, then the SMF record will be passed for REPORT processing only if at least one of the following is true:

No other SMF content match criteria is specified.1.
The SMF content match criteria logical operation is "OR".2.
All other specified SMF content match criteria each return a true result.3.

In the following example, a true result will be returned if the SMF record has a zJobName field that contains a job
name "GIM" or beginning with "GIM" or any job name of length 5.

JOBNAME(GIM*, %%%%%)

The following SMF record types are known to contain a zJobName field.

004
005
006

010
014
015

017
018
020

025
026
030

034
035
036

040
042
060

061
062
063

064
065
066

067
068
069

080
110
118

JOBNAME and other content match criterion are invalid if a filter expression is provided via the FILTER section of
the report definition. If both a FILTER section and a JOBNAME specification exists, then error message ERR066E
is returned.

LOGIC(OR|AND)

Applicable to SMF input only, the LOGIC operand specifies the logical operation (AND or OR) to be used when
determining the result of content match criteria record filtering. This logical operation value will override a value
specified by the SMFLOGIC option in the report definition.

LOGIC must be entered between the SMF-INPUT-BEG and SMF-INPUT-END command line operands.

The logical operation is used to combine the Boolean values (true or false) returned by each of the specified
content match criteria elements:

Unformatted Record Find String matching (FIND)◊
SMF Record Job Name matching (JOBNAME)◊
SMF Record System Id matching (SID)◊
SMF Record Type matching (TYPES)◊
SMF Record User Name matching (USERID)◊

Content matching criteria elements may be specified in the report definition input, and/or passed to the REPORT
utility via command line operands or panel input fields.

The "AND" or "OR" logical operation is performed between each of the Boolean values returned by the specified
content matching criteria to produce an overall true (1) or false (0) result. If the overall result is true, the record
satisfies the content match criteria and is passed to REPORT generation processing.

If logical operation AND is used then the result returned by all of the content checking criterion elements specified
for the current REPORT execution must be 1 (i.e. true). If logical operation OR is used then only one of the values
returned by the content checking criterion elements must be 1 (true) in order to return a true result for the record.

Note that other SMF record filtering controlled by high date (DATEHI) / low date (DATELO) thresholds and input
record limit (ILIM), does not form part of the content checking criteria and so is not affected by the logical
operation.

OLIM(nrecs)

Specifies the maximum number of detail line report records (nrecs) that may be written to the output dataset. This
value will override a value specified by the OLIM option in the report definition.

OLIM must be entered between the DB2-INPUT-BEG and DB2-INPUT-END command line operands, or between
the SMF-INPUT-BEG and SMF-INPUT-END command line operands, or between the SDE-INPUT-BEG and
SDE-INPUT-END command line operands.

Once the number of output report detail lines reaches this limit, no further input records/DB2 table rows will be
processed.

OLIM(0) implies no output record limit and is set by default when no OLIM operand value is supplied and no OLIM
option is set in the report definition,

ONLINE|OFFLINE

Applicable to SMF input only, ONLINE indicates that SMF input records are being processed directly from an SMF
log data set (SYS1.xxxx.MANx), OFFLINE indicates that records are being processed from an SMF archive data
set. The specification of ONLINE or OFFLINE will override a value specified by the SMFONLINE option in the
report definition.

REPORT Execution REPORT Command

2024/09/02 11:04:59 FileKit REPORT Utility 107

Note that the REPORT utility does not support processing SMF records directly from the System Logger.

ONLINE/OFFLINE must be entered between the SMF-INPUT-BEG and SMF-INPUT-END command line
operands.

Unlike records written to an archive data set by the SMF DUMP (IFASMFDL and IFASMFDP) utilities, records in
an SMF log dataset are prefixed by an extra 4-byte record descriptor word (RDW) and so record-type field
mapping must be offset by 4 bytes. The OFFLINE/ONLINE specification will determine whether this offset is to be
applied by the REPORT utility.

Beware that any application, including the REPORT utility, that processes records directly from an online SMF log
data set, may prevent successful execution of an IFASMFDP CLEAR operation (usually triggered by the IEFU29
exit). This is because the IFASMFDP CLEAR operation requires exclusive access to the SMF dataset.

If no OFFLINE or ONLINE operand is supplied and no SMFONLINE option is set in the report definition, then
OFFLINE is default.

{ ORDER [BY] | SORT } (order_by_clause)

Applicable to DB2 table input only where a DB2 table or view name is specified as input (as opposed to a fully
formed SQL SELECT query).

ORDER BY or SORT specifies a DB2 SQL ORDER BY clause to be applied to the DB2 result table and included in
the prepared SQL SELECT query statement generated by the REPORT utility. This ORDER BY clause will
override a SORTINDEX, ORDER BY or SORT specification provided in the INPUT section of the report definition.

ORDER BY or SORT must be entered between the DB2-INPUT-BEG and DB2-INPUT-END command line
operands.

See IBM publication "DB2 SQL Reference" for syntax of the order_by_clause which will fetch result table rows in
the specified order.

If required, a SORT section may also be specified in the report definition to sort the report output record detail
lines. This may be necessary if report detail lines are to be sorted based on the values of one or more
compute-field.

Operands ORDER BY (or SORT) and SORTINDEX are mutually exclusive. If both are specified, the specified
ORDER BY clause will take precedence.

OUTDD(ddout)
OUTPUTDD(ddout)

Specifies the DD name (ddout) that is allocated to the data set to which the generated output report will be written.
This output DD name will override output to DD name SDEOUT or the output DD name, DSN or HFS/ZFS file path
provided in the OUTPUT section of the report definition.

REPORT utility output data object is determined in the following order of precedence:

If the REPORT utility is executed using the REPORT primary command and the OUTDD (or OUTPUTDD)
operand is specified, then output is to the DD name specified by operand OUTDD.

1.

If DD name SDEOUT is allocated, DD=SDEOUT2.

The data object (ddout, dsname or fileid) specified by the OUTPUT section of the report definition.3.

If executing in batch, DD=SDEPRINT. (Allocation of SDEPRINT is mandatory for batch execution.)4.

For FileKit foreground execution only, an unsaved, in-storage file assigned a DSN
"userpfx.REPORT.Dyyyyddd.Thhmmss.TXT", where userpfx is the DSN prefix associated with the current
FileKit user and yyyyddd and hhmmss is the current Julian date and time respectively. The in-storage
data is displayed in a Text Editor view and may be saved to a specific DSN using "SAVE dataset-name".

5.

PAGEDEPTH(nlines)

For printed report output only, PAGEDEPTH specifies the number of lines nlines per page. This value will override
a value specified by the PAGEDEPTH option in the report definition.

If a PAGEDEPTH value is not specified and no PAGEDEPTH option exists in the report definition, then the default
page depth will be the value assigned by the PAGEDEPTH Data Editor option. (See "PAGEDEPTH -
SET/QUERY/EXTRACT Option" in the "FileKit Data Editor (SDE)" manual.)

report_ctl

Specifies the name of the report definition data set or library member. A report_ctl may be one of the following:

REPORT Execution REPORT Command

2024/09/02 11:04:59 FileKit REPORT Utility 108

A sequential dataset DSN1.
A library DSN followed by a parenthesised member name2.
A member name. (Foreground execution only.)3.

A report_ctl object may be specified as the only operand on the REPORT command, in which case the default
action is RUN and the default report output format is PRINT.

If executing in the FileKit foreground, then report_ctl may be omitted or specified simply as a member name. If
omitted, the default for report_ctl is member name "REPORT". When no library DSN is specified, the default library
"userpfx.FILEKIT.RPT" is used (see report_lib description). As for report_lib, this library data set will be allocated
as new if it does not already exist.

For "REPORT ADD", "REPORT E" and "REPORT NEW" the specified member name may be created as new. In
all other cases the report definition file specified by report_ctl must already exist.

report_inp | DD=ddin

Used specifically for "REPORT RUN" execution for SDE and SMF format input, these operands identify the data
source containing the input data records for report processing. This data source will override the input data source
(DD name, DSN or HFS/ZFS file path) provided in the INPUT section of the report definition.

report_inp or DD=ddin must be entered between the SMF-INPUT-BEG and SMF-INPUT-END command line
operands, or between the SDE-INPUT-BEG and SDE-INPUT-END command line operands. For foreground
processing only, if no INPUT section exists in the report definition and no report_inp or DD=ddin is specified, then
the REPORT utility will attempt to process non-excluded records from the current FileKit Data Editor view. If no
current view exists or data does not include record-type field names specified in the report definition, then the
appropriate error is returned.

The input may be specified as a sequential dataset, library dataset and member name or HFS/ZFS file path (fileid),
or as an allocated DD name (ddin). If specified as a DD name, ddin must be prefixed with "DD=".

If DD=ddin is specified, ddin may be allocated to a DASD or TAPE dataset. Alternatively, it may be allocated to a
concatenation of data sets, thus allowing records to be processed from multiple, consecutive input sources. e.g.
Multiple generations of the same GDG.

report_lib

Used specifically by "REPORT L", report_lib identifies the library containing report definition members. A report_lib
may be one of the following:

A library DSN1.
A library DSN followed by a parenthesised member mask2.
A member mask3.

A member mask may contain asterisk ("*") wildcard symbols which each represents 0 or more of any consecutive
characters in the member name, and/or percent ("%") wildcard symbols which each represent any single character
within the member name.

All members, or only those members that match the supplied member mask, will be included in the list of report
definition source members.

If report_lib is not specified or is specified as a member mask without a library DSN, then a default library DSN of
"userpfx.FILEKIT.RPT" is used, where userpfx is the user's default DSN high level qualifiers as set by the FileKit
SITE INI file and assigned to environment variable "MyHLQ". If data set "userpfx.FILEKIT.RPT" does not yet exist,
then it is automatically allocated as a new PDSE library with RECFM=VB, LRECL=16384, BLKSIZE=0 and
CYLINDERS(1,1).

RPTDEF(report_ctl | DD=ddrpt)

The RPTDEF operand identifies the report definition source used for a "REPORT CMX", "REPORT JCL" or
"REPORT RUN" execution. RPTDEF is mandatory for "REPORT RUN" execution in batch.

The report definition source may be specified as a sequential data set or library member (see report_ctl
description) or as an allocated DD name (ddrpt). Note that DD= is mandatory if ddrpt is used.

If RPTDEF is omitted, then library member "REPORT" in the default report source library is used. i.e.
"userpfx.FILEKIT.RPT(REPORT)", where userpfx is the current user's default DSN high level qualifiers.

SCROLL

Applicable only to DB2 table input, SCROLL indicates that a DB2 scrollable INSENSITIVE cursor is to be used to
fetch DB2 rows.

SCROLL must be entered between the DB2-INPUT-BEG and DB2-INPUT-END command line operands.

REPORT Execution REPORT Command

2024/09/02 11:04:59 FileKit REPORT Utility 109

If SCROLL is used, then once the cursor has been opened, only a relatively small number of rows will be kept in
storage at any time. At open the results table is materialised (i.e. a temporary copy is made) which, for large tables,
may mean that opening the cursor may take a long time and consume much resource.

Use of DB2 scrollable cursors may not be desirable and so is possible only if the DB2 administrator has set
DB2.SCROLL=YES in the FileKit Site INI file.

SCROLL is incompatible with FOR, ILIM and FROM values specified via the INPUT section of the report definition,
or passed as parameters by the FileKit REPORT panels or REPORT command. If specified, values provided for
these operands will be ignored if SCROLL is also used.

SDE-INPUT-BEG ... SDE-INPUT-END

The SDE-INPUT-BEG and SDE-INPUT-END operand pair indicates SDE (Structure Data Edit) format REPORT
utility input. The operands also identify the start and end of a number of REPORT utility command line operands
that are specific to SDE record input processing. i.e. SDE specific operands must be entered after
SDE-INPUT-BEG and before SDE-INPUT-END.

For this type of input, fields must be defined within the input records. This is done either by specifying a MAP
section in the report definition file, or by providing an external record formatting structure (PL1 or COBOL
copybook, HLASM DSECT or FileKit SDO). The name of a structure data set or library member may be specified
via the INPUT section of the report definition, or passed as a parameter on the FileKit REPORT panels or
REPORT command (see SDO-INPUT-BEG / SDO-INPUT-END below).

Note that if the REPORT option in the report definition is specified, then this will dictate the REPORT input format.
If this option is DB2 or SMF, then operands entered between SDE-INPUT-BEG / SDE-INPUT-END that are not
applicable to the specified REPORT input format are ignored.

SDO-INPUT-BEG ... SDO-INPUT-END

For SDE format input only, the SDO-INPUT-BEG and SDO-INPUT-END operands identify the start and end of
REPORT utility command line operands that define the a record formatting structure. Record formatting structure
operands must be entered after SDO-INPUT-BEG and before SDO-INPUT-END and will override a structure
definition provided in the INPUT section of the report definition. Providing a record formatting structure will also
override use of record field mappings defined by a MAP section in the report definition.

SDO-INPUT-BEG and SDO-INPUT-END operands must be entered between SDE-INPUT-BEG and
SDE-INPUT-END command line operands.

The structure ultimately used by the REPORT utility to map the input records will be a FileKit structured data object
(SDO). The name of an SDO may be passed directly to the REPORT utility or it may be automatically generated
from an alternative source (e.g. a COBOL copybook). The following operands may be entered between
SDO-INPUT-BEG and SDO-INPUT-END.

[STRUCTURE] sdo_name

Specifies sdo_name, the sequential DSN or library DSN and member name of the FileKit SDO structure
used to map the input records. This is an sdo_name created via the FileKit Create Structure panels or via
the CREATE STRUCTURE primary command.

{ HLASM | COBOL | PL1 | ADATA } copybook_name

Specifies the format and name of the input record mapping source file (copybook_name). The
copybook_name is a library DSN and member name and the format may be one of the following:

ADATA The SYSADATA output generated by the assembley of an assembler source using
the HLASM (High Level Assembler) program, or generated by the compilation of a
COBOL or PL1 source using the Enterprise COBOL or Enterprise PL1 compiler.

COBOL A copybook member containing COBOL data division - data description source.
HLASM An Assembler source member containing DSECT definitions.
PL1 An %INCLUDE directive source member containing PL1 data declaration structures.

FileKit will interpret the record mapping source to generate a temporary SDO structure.

SYMNAMES(SYMNAME_source ...)

Specifies one or more SYMNAME_source entries, where SYMNAME_source is the name of a sequential
data set or library and member name containing SYMNAMES symbol statements as supported by the
SORT utility.

Symbol statements must include field definitions specified as position, length and format. Please refer to
your SORT utility documentation (e.g. the IBM publication "z/OS DFSORT Application Programming
Guide") for details on the symbol statement.

FileKit will interpret the SYMNAMES field definitions to generate a temporary SDO structure containing a
single record mapping (record-type).

REPORT Execution REPORT Command

2024/09/02 11:04:59 FileKit REPORT Utility 110

SID(sid, ...)

Applicable only to SMF input records, the SID operand specifies one or more comma separated system
identification search values (sid). These system identification values will override values specified by the SMFSID
option in the report definition for SMF Record System Id matching.

SID must be entered between the SMF-INPUT-BEG and SMF-INPUT-END command line operands.

A sid value may be specified as an unquoted, quoted or character literal string and may contain one or more
wildcard characters as described by search values under "Record Filtering".

Unless sid contains an asterisk ("*") wildcard, which represents zero or more occurrences of any character, then
the sid value will be truncated or padded with blanks to a length of 4 characters. Furthermore, if no percent ("%") or
asterisk ("*") wildcards are specified and sid is an unquoted or quoted string, then all alpha characters will be
upper cased.

All SMF record types contain a system identifier field zSID in the record header. If an SMF record zSID field
contains a match on any of the supplied sid values, then SMF Record System Id matching will return a true result
(1). Otherwise, if no match is found for any of the supplied sid values, a false result (0) is returned.

SMF Record System Id matching is one of the content match criteria for SMF record filtering. If a true result is
returned, then the SMF record will be passed for REPORT processing only if at least one of the following is true:

No other SMF content match criteria is specified.1.
The SMF content match criteria logical operation is "OR".2.
All other specified SMF content match criteria each return a true result.3.

In the following example, a true result will be returned if the zSID field contains a system id value "XS1", a value
beginning with "S0" followed by any single character followed by "1", or a value of up to 4 characters in length
ending in "Z".

SID('xs1', S0%1, '*Z')

SID and other content match criterion are invalid if a filter expression is provided via the FILTER section of the
report definition. If both a FILTER section and a SID specification exists, then error message ERR066E is returned.

SMF-INPUT-BEG ... SMF-INPUT-END

The SMF-INPUT-BEG and SMF-INPUT-END operand pair indicates SMF (z/OS System Management Facilities)
format REPORT utility input. The operands also identify the start and end of a number of REPORT utility command
line operands that are specific to SMF record input processing. i.e. SMF specific operands must be entered after
SMF-INPUT-BEG and before SMF-INPUT-END.

The REPORT utility performs special processing for SMF record input and uses the standard SMF record mapping
structures provided by FileKit to generate the required SDO structure.

Note that if the REPORT option in the report definition is specified, then this will dictate the REPORT input format.
If this option is DB2 or SDE, then operands entered between SMF-INPUT-BEG / SMF-INPUT-END that are not
applicable to the specified REPORT input format are ignored.

SORTINDEX { index_name | PRIME }

Applicable to DB2 table input only where a DB2 table or view name is specified as input (as opposed to a fully
formed SQL SELECT query).

SORTINDEX specifies index_name, the name of an existing DB2 Index for the table being processed. The index
identifies the key columns/expressions by which the table rows will be ordered for input to the REPORT utility. This
SORTINDEX value will override a SORTINDEX, ORDER BY or SORT specification provided in the INPUT section
of the report definition.

SORTINDEX must be entered between the DB2-INPUT-BEG and DB2-INPUT-END command line operands.

PRIME may be specified as an alternative to indicate that the primary index should be used.

If required, a SORT section may also be specified in the report definition to sort the report output record detail
lines. This may be necessary if report detail lines are to be sorted based on the values of one or more
compute-field.

Operands ORDER BY (or SORT) and SORTINDEX are mutually exclusive. If both are specified, the specified
ORDER BY clause will take precedence.

table | view | SQL(sql_query) | SQL sql_file

Applicable to DB2 table input only, these operands define the DB2 result table to be used as input to the REPORT
utility. This DB2 result table definition will override any result table definition provided in the INPUT section of the
report definition.

A DB2 result table definition must be entered between the DB2-INPUT-BEG and DB2-INPUT-END command line
operands.

REPORT Execution REPORT Command

2024/09/02 11:04:59 FileKit REPORT Utility 111

These operands are mutually exclusive and may be specified as follows:

table The name of a DB2 table (table) as defined in the SYSIBM.SYSTABLES catalog
table.

view The name of a DB2 view (view) as defined in the SYSIBM.SYSVIEWS catalog table.
SQL(sql_query) Specifies sql_query, a complete DB2 SQL query that generates a result table.

For example, the SQL query may include clauses that select specific columns, join
tables, filter and order the table rows.

SQL sql_file Specifies sql_file, a sequential DSN or library DSN and member name in which a DB2
SQL query is saved.

For example, this may be a library member containing a SQL query used as input to
SPUFI or the FileKit EXECSQL utility.

Both table and view may be specified with either 1, 2 or 3 qualifiers representing name, schema.name or
location.schema.name respectively. Default for location is the local DB2 server and the default for schema is the
value assigned to special register CURRENT SCHEMA (initially set to the user's SQLID). Note that the user's
SQLID is set via the FileKit DB2 Primary Options menu and saved in the User INI file.

If table or view is used, then FileKit will generate an SQL query clause (e.g. "SELECT * FROM table").

If one of the SQL type operands is used and the report definition input includes a FILTER section, then the filter
clause will be ignored and warning message ZZSR064W returned. This is because the FILTER section will attempt
to generate a WHERE clause to add to the SQL Query. However, the SQL Query passed to the REPORT utility is
already fully formed.

The SQL query specified by the SQL operand or generated by FileKit is executed as a prepared DB2 SQL
statement and the result table rows passed to the REPORT utility.

TYPES({rectype | rectype:rectype | {rectype-subtype | rectype#subtype} }, ...)

Applicable only to SMF input records, the TYPES operand specifies one or more comma separated SMF record
type identification values (rectype, rectype:rectype, rectype-subtype or rectype#subtype). These SMF record type
identification values will override values specified by the SMFTYPES option in the report definition for SMF Record
Type matching.

TYPES must be entered between the SMF-INPUT-BEG and SMF-INPUT-END command line operands.

A description of each of the different SMF record type identification values is documented in SMF Type Values
under "Record Filtering".

All SMF record types contain an SMF record type field zRTY and some also contain a sub-type field zSTY in the
record header. If an SMF record contains a match on any of the supplied SMF record type identification values,
then SMF Record Type matching will return a true result (1). Otherwise, if no match is found for any of the supplied
values, a false result (0) is returned.

SMF Record Type matching is one of the content match criteria for SMF record filtering. If a true result is returned,
then the SMF record will be passed for REPORT processing only if at least one of the following is true:

No other SMF content match criteria is specified.1.
The SMF content match criteria logical operation is "OR".2.
All other specified SMF content match criteria each return a true result.3.

In the following example, a true result will be returned if the input SMF record type (zRTY field value) is 42 (any
sub-type), or if the SMF record type is 119 with sub-type (zSTY field value) of 21.

TYPES(42, 119#21)

TYPES and other content match criterion are invalid if a filter expression is provided via the FILTER section of the
report definition. If both a FILTER section and a TYPES specification exists, then error message ERR066E is
returned.

USERID(username, ...)

Applicable only to SMF input records, the USERID operand specifies one or more comma separated user name
search values (username). These user name values will override values specified by the SMFUSERID option in
the report definition for SMF Record User Name matching.

USERID must be entered between the SMF-INPUT-BEG and SMF-INPUT-END command line operands.

A username value may be specified as an unquoted, quoted or character literal string and may contain one or
more wildcard characters as described by search values under "Record Filtering".

Unless username contains an asterisk ("*") wildcard, which represents zero or more occurrences of any character,
then the username value will be truncated or padded with blanks to a length of 8 characters. Furthermore, if no

REPORT Execution REPORT Command

2024/09/02 11:04:59 FileKit REPORT Utility 112

percent ("%") or asterisk ("*") wildcards are specified and username is an unquoted or quoted string, then all
alpha characters in the string will be upper cased.

For example, if SMF records contain a zUserId field value "ABC", "ABC1", "ABCXXX" and "XABC" then
"USERID(abc)" would match "ABC" only, "USERID(abc*)" would match "ABC", "ABC1" and "ABCXXX",
"USERID(%abc)" would match "XABC" only and "USERID(*abc*)" would match all 4 values.

A number of SMF record types contain a user name field zUserId at a fixed location within the record data. This
fixed position may be different for each of the SMF record types. If an SMF record zUserId field contains a match
on any of the supplied username values, then SMF Record User Name matching will return a true result (1).
Otherwise, if no match is found for any of the supplied username values or the SMF record does not contain a
zUserId field, then a false result (0) is returned.

SMF Record User Name matching is one of the content match criteria for SMF record filtering. If a true result is
returned, then the SMF record will be passed for REPORT processing only if at least one of the following is true:

No other SMF content match criteria is specified.1.
The SMF content match criteria logical operation is "OR".2.
All other specified SMF content match criteria each return a true result.3.

In the following example, a true result will be returned if the SMF record has a zUserId field that contains a user
name of any length up to a maximum of 8 characters ending with 1, or a user name beginning with "ABC" followed
by any single character followed by "DEFG".

USERID(*1, ABC%DEFG)

The following SMF record types are known to contain a zUserId field.

004
005
006
010

014
015
017
018

020
025
026

030
032
034

035
036
040

042
060
061

062
063
064

065
066
067

068
069
080

110
118
119

USERID and other content match criterion are invalid if a filter expression is provided via the FILTER section of the
report definition. If both a FILTER section and a USERID specification exists, then error message ERR066E is
returned.

WHERE(where_clause)

Applicable to DB2 table input only where a DB2 table or view name is specified as input (as opposed to a fully
formed SQL SELECT query).

WHERE specifies a DB2 SQL WHERE clause to be used to filter the DB2 result table rows and is included in the
prepared SQL SELECT query statement generated by the REPORT utility. This WHERE clause will override a
WHERE clause specification provided in the INPUT section of the report definition.

WHERE must be entered between the DB2-INPUT-BEG and DB2-INPUT-END command line operands.

A DB2 where clause may also be provided via the FILTER section of the report definition. If both a FILTER section
and a WHERE specification exists, then the contents of the FILTER section are ignored and warning message
ERR064W is returned.

See IBM publication "DB2 SQL Reference" for syntax of the where_clause which will filter and include only table
rows that match the where clause criteria.

REPORT Execution REPORT Command

2024/09/02 11:04:59 FileKit REPORT Utility 113

REPORT Definition

The REPORT definition input contains the control statements that configure the required contents and layout of the report
output.

This chapter details the format and syntax rules of report definition control statements. It also provides details on the syntax
and actions performed by each of the report definition sections supported by the REPORT utility.

Syntax Rules

Records are read from the input REPORT definition file and processed one at a time in order of input sequence. The
following describes how each of the REPORT definition input records is intepreted by the REPORT utility.

Statement Continuation

By default, every record read from the REPORT definition input file is identified as a control statement. The control
statement text starts at the first character and ends at the last character of the record.

For practical or aesthetic purposes, it may be necessary to continue a control statement onto the next input record. To
achieve this, an uncommented statement continuation symbol, backslash ("\"), should be entered as the last non-blank
character of the input record containing the start of the control statement text. If the continuation symbol is part of comment
data, then it will be ignored.

Input definition file record processing will join the character immediately before the continuation symbol with the first
character of the next record. The continuation symbol itself is removed from the control statement text.

If the control statement needs to span multiple input records, then the uncommented continuation symbol must exist as the
last non-blank character of all records over which the control statement spans, except the last.

For example, the following illustrates a single break definition statement that spans 13 records of the REPORT definition file.

 BREAK:
 SMF119#02_TCP_Connection_Termination.zConnectStart 10 \
 AVERAGE \
 NZAVERAGE \
 MAXIMUM \
 MINIMUM \
 NZMINIMUM \
 SPACEBEFORE(1) \
 SPACEAFTER(1) \
 FOOTING(\
 <newline> \
 ' -- End of' zRNAME ' statistics for' zConnectStart (10) '--' \
 <newline> \
)

Statement Separation

An REPORT definition record may be split into a number of control statements using an uncommented control statement
separation symbol, semi-colon (";"), which is not part of a quoted character string literal. The separation symbol marks the
end of one control statement and the start of the next. If the separation symbol is part of comment data, then it will be
ignored.

Input definition file record processing will terminate a control statement at the character immediately before the separation
symbol and start the next control statement at the first character following the separation symbol. The separation symbol
itself is removed from control statement text.

In the following example, the report definition input record is split into 3 column definitions belonging to the same report
detail line for which values will be displayed.

 COLUMNS:
 CUSTID ("Customer|Ref#"); CONTACT ("Contact|Name"); COMPANY ("Company|Name" CENTRE) 30

2024/09/02 11:04:59 FileKit REPORT Utility 114

Comments

Comment text may be entered in REPORT definition file using either of the following 2 methods:

Asterisk ("*") as the first non-blank character on an input record.1.
Between unquoted slash-asterisk ("/*") and asterisk-slash ("*/") character pairs anywhere within the input
records.

2.

When a record is read that contains an asterisk ("*") as the first non-blank character, then the record is bypassed and
processing continues with the next input record. Any statement separation or statement continuation specification will be
ignored.

In the following example, the input records containing TOTAL and REPEAT parameters for the control break definition will
be ignored. Statement continuation is picked up at the record containing the HEADING parameter that follows.

 BREAK:
 SMF119#02_TCP_Connection_Termination.zRName \

* TOTAL() \
* REPEAT \

 HEADING(\
 <newline> 'This is a header for group:' zRNAME (RIGHT,10) \
 <newline> '--------------------------------------') \
 SPACEAFTER(PAGE)

When a slash-asterisk ("/*") character pair is encountered anywhere within the input records but is not part of a quoted
character string literal, then it denotes the start of comment text. The comment text is ended by an asterisk-slash ("*/")
character pair which is also not part of a quoted character string literal.

If a control statement contains comment text started by a slash-asterisk ("/*") character pair, then text on subsequent
records is joined to the end of the control statement text until the comment text is ended by the asterisk-slash ("*/")
character pair. Thus the comment text may span a number of input records.

Statement separation or statement continuation symbols that exist within the comment text will be ignored.

The following example contains numerous comment text specifications between the definition of a 3 line report page
header. In the definition of the 3rd header line, the control statement is continued to included the "Duration" field value.
Between the continued control statement is a string of comment text that spans 6 lines.

 HEAD:
/* 1st Page Header. */

 #TIMESTMP / /* Time stamp is left adjusted in 1st page header. */

/* 2nd Page Header. */
 "TCP/IP Connection Durations by Resource Name on:" zTME

/* 3rd Page Header. */
 "Resource:" zRNAME 10 "First Connection:" zConnectStart 10 \

/* The "Duration" compute-field uses built-in functions Time2Secs()
 | and Secs2Time() and is calculated as:
 |
 | DURATION = Secs2Time(Time2Secs(zConnectEnd) - Time2Secs(zConnectStart))
 |
 / "Duration:" :Duration (8) / Last part of 3rd page header print-expression. */

Character String Literals

Character string literals are used to define fragments of text to be included in the report output. The value of a character string
literal is constant and so remains unchanged throughout execution of the REPORT utility.

A character string literal is specified as literal and must be enclosed in either apostrophes ('literal') or quotation marks ("literal").
e.g.

 "Contents of Album:"

The symbol selected to enclose literal may not be used as a character within the literal string unless it is escaped. An escaped
occurrence of the enclosing symbol within literal will be treated as a character within the text string. The escape character is the
enclosing symbol itself so, if quotation marks are used to enclose literal, then two adjacent quotation marks within literal ("") will
represent a single occurrence of a quotation mark (") in the text string.

In the following example, apostrophe is used to enclose a literal value which contains both quotation marks and an apostrophe.
The apostrophe following "John" is escaped so that it is treated as a single occurrence of the symbol.

 'Report for "St. John''s Priory"'

REPORT Definition Statement Separation

2024/09/02 11:04:59 FileKit REPORT Utility 115

Page Width

Printed report output lines have a maximum length equal to the page width value (plus 1 for the print ASA character).

The page width value is not specified as a report utility parameter but is instead calculated as the maximum length of the
following report lines:

Page heading lines (HEAD)•
Page footing lines (FOOT)•
Control break lines (BREAK)•
Column detail lines (COLUMNS)•

The page width value is used by the REPORT utility to align portions of text in page heading and footing lines. For example,
the following is a one line page heading definition.

HEAD:
 #TIMESTAMP / "Music Collection" / "Page" #PAGE (RIGHT,5)

If the page width value is calculated as being 80, then the following printed report page heading generated will be length 81
with a page throw ASA character "1" in the first column.

 +....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8.
 12020/02/06 12:47 Music Collection Page 1

Note that, if a report line exceeds the maximum length of the allocated report output data set then it will be truncated.

REPORT Definition Page Width

2024/09/02 11:04:59 FileKit REPORT Utility 116

Record Types

A record type is the name given to a group structure that maps fields to the data belonging to a record or record segment. A
record type name is referenced throughout this manual as record-type.

Record type mappings are defined within a FileKit structure definition object (SDO). When the REPORT utility starts, an
SDO containing the required record type definitions is loaded into storage. Therefater, one of the record types contained in
the SDO gets assigned to each input record or record segment as it is read from the input source.

FileKit SDO Structure

A FileKit SDO structure must be provided as input to the REPORT utility unless the report is generated from one of the
following:

SMF records.1.
A DB2 result table.2.
A report definition that contains fields defined via the MAP section.3.

The specified FileKit SDO structure containing the required record types may be an already generated member of an SDO
library or an in-storage object generated by FileKit from a COBOL, PL1 or HLASM source library member.

If the SDO is to be generated by FileKit, then the source library member must contain one or more data mapping group
structures defined as either COBOL data description entries, PL1 structure definitions or HLASM DSECTs. A record type
definition will be created for each COBOL 01 level group definition, PL1 declared structure or Assembler DSECT. If input
records are to be mapped using different group structures obtained from more than one source member, then a permanent
SDO library member should be created and used instead. (See "Create Structure from COBOL/PL1 Copybooks" in the
"FileKit Reference and User Guide".)

Note that, for SMF record input, a temporary, in-storage SDO structure object with the name "REPORT" is automatically
generated by FileKit for use by the REPORT utility. This SDO will contain only those record type definitions that match the
record-type names specified in the COLUMNS and REQUIRED sections of the report definition file.

Similarly, for DB2 table input, FileKit uses information obtained from the SQLDA to generate a temporary, in-storage SDO
containing a single record-type definition that maps all the rows of the input result table.

Record Type Assignment

As a record is read from the input data source, it is assigned one of the record types defined in the SDO structure.

The record-type used to map the data is selected based on the contents of the record and the selection criteria associated
with the record-type. e.g. For SMF input records, the record-type "SMF119#01_TCPIP_Statistics" is selected to map the
data if the record has a value of "119" in the "zRTY" (SMF record type) field and a value of "1" in the "zSTY" (SMF record
sub-type) field.

If the input records are segmented (as is the case for SMF record types), then a primary record-type is assigned to the data
at the start of the input record. This is known as the primary or base segement. Thereafter, record content and selection
criteria determine the secondary record-type mappings assigned to the remainder of the record data. These are known as
secondary record segements.

Record Type Specification

Unless the input SDO structure contains only one record type definition or has been generated for DB2 table input, then the
record type name (record-type) to which a field belongs must be included in the fieldname specification for an input record
field in the COLUMNS or REQUIRED sections of the Report Definition file. (i.e. record-type.input-field)

For example, the following report output column definition will uniquely identify input record field "TITLE" as belonging to the
record type "CONTACT":

 COLUMNS:
 CONTACT.TITLE

If a record-type has been identified in the COLUMNS or REQUIRED sections, then it may also be referenced in the
REPEAT and RESET sections to trigger an output report and a reset to null of input field values.

If a field of the same name and data type exists in different record type definitions within the SDO, then for each input record
assigned one of these record types, it may be desirable for the field's values to be reported in the same column output.

For example, the numeric fields "LENGTH", "WIDTH", "HEIGHT" may exist in 2 record type definitions "DIM_WINDOW" and
"DIM_DOOR". In the report output, you may want the values of these 3 fields to be reported in the same 3 columns,
regardless of whether the input record is mapped by "DIM_WINDOW" or "DIM_DOOR"

REPORT Definition Record Types

2024/09/02 11:04:59 FileKit REPORT Utility 117

To achieve this, the record-type used in the fieldname specification may have a prefix that is common to both record type
names followed by an asterisk ("*") wildcard. For this example, the column definitions would be as follows:

 COLUMNS:
 DIM*.LENGTH
 DIM*.WIDTH
 DIM*.HEIGHT

Note that use of an asterisk wild card is valid only as a suffix on record-type.

REPORT Definition Record Type Specification

2024/09/02 11:04:59 FileKit REPORT Utility 118

Fields

Field specifications are the names of fields which contain values required for report generation. These field values may vary
over the course of the REPORT program execution.

The field names may be referenced in sections of the REPORT definition input to identify report columns, statistics columns,
sort fields and break fields. They may also be referenced in print expressions to include the current value of a field in an
output text string.

Field specifications are categorised as one of the following:

An input record field.1.
A built-in field.2.
A computed field.3.

Input Record Fields

An input record field identifies the name of a field defined in the record-type structure used to map an input record or record
segment. An input record field is referenced as input-field throughout this manual.

As a record is read from the input data set, it is assigned one of the record-types defined in the accompanying FileKit data
mapping structure (SDO). Furthermore, if the record is segmented, each segment of the record data is assigned a
record-type mapping and processed separately by the REPORT utility. (Note that most SMF records contain segmented
data.)

Once record data has been mapped, values are extracted for all input record fields that are defined in the REPORT
definition and also exist in the mapping for the record (or record segment) currently being processed. The values of all other
fields defined in the record-type assigned to the current record are ignored.

Input Record Field Specification

The COLUMNS and REQUIRED sections of the Report Definition file define all the input record fields (input-field) to be used
in the report generation. An error occurs if an input-field is referenced in another section but is not defined in the COLUMNS
or REQUIRED section.

An input-field specification may comprise more than one qualifier name in order to specify the record-type and uniquely
identify a field within the record-type mapping. Where input-field is qualified, then each qualifier corresponds to the name of
a group in the field's record-type/sub-group/field name hierarchy. Each qualifier must be separated from the last using a
dot/period (".") character.

Depending on the context in which it is used and the structure of the input records, an input-field identifier may be
referenced in 1 of 2 ways:

Unqualified

This is the simplest form of input-field and is the name of the field within a record-type definition.

An unqualified input-field should be used when referenced as any of the following:

The fieldname reference in a COLUMNS or REQUIRED section if the field name is unique within the record-type
mapping.

If more than one occurrence of the field name exists within the record-type mapping (e.g. within different group
fields) then a qualified input-field must be used.

The COLUMNS and REQUIRED sections define the input record fields for the REPORT utility execution. e.g.

 COLUMNS: /* Records mapped by structure containing record-types "ALBUM" and "TRACK". */
 ALBUM.TITLE /* Unique field name "TITLE" in record-type "ALBUM". */
 TRACK.RUNTIME /* Unique field name "RUNTIME" in record-type "TRACK". */

•

The fieldname reference in a BLANKWHENZERO, BREAK, MAP, SORT or STATISTICS section if the field is
defined as an unqualified input-field in the COLUMNS or REQUIRED section.

•

A variable in a REXX expression within the COMPUTE section if the fieldname is specified in the COLUMNS or
REQUIRED section as record-type.input-field or input-field and input-field is also unqualified. e.g.

 COMPUTE: /* Update compute-field "ELAPSED" */
 ELAPSED = format(RUNTIME/1000,,3) /* Value derived from input-field "RUNTIME". */

•

A text substitution variable in a print expression if the fieldname is specified in the COLUMNS or REQUIRED
section as record-type.input-field or input-field and input-field is also unqualified. e.g.

•

REPORT Definition Fields

2024/09/02 11:04:59 FileKit REPORT Utility 119

 BREAK: /* Trigger control break following change in "ALBUM" value. */
 ALBUM HEADING("Tracks on Album:" ALBUM) /* Substitute ALBUM name in header text. */

Fully Qualified

A fully qualified input-field identifier will contain a qualifier name for each level of group field within the record-type mapping
to which the required field belongs. The last qualifier is the name of the field itself.

For example, within a record-type mapping "COPY" the same field name "DISP" exists within two separate group fields
"SOURCE" and "TARGET". To uniquely identify these "DISP" fields, fully qualified input-field identifiers must be used:

SOURCE.DISP
TARGET.DISP

An fully qualified input-field should only be used for the following:

The fieldname reference in a COLUMNS or REQUIRED section where specification of an unqualified input-field is
not possible because the field name is not unique within the assigned record-type.

The COLUMNS and REQUIRED sections define the input record fields for the REPORT utility execution. e.g.

 COLUMNS: /* Structure containing multiple record-types including record-type "COPY". */
 COPY.SOURCE.BLKSIZE /* Unique field name "SOURCE.BLKSIZE" in record-type "COPY". */
 COPY.TARGET.BLKSIZE /* Unique field name "TARGET.BLKSIZE" in record-type "COPY". */

•

The fieldname reference in a BLANKWHENZERO, BREAK, MAP, SORT or STATISTICS section if the field is
defined as a fully qualified input-field in the COLUMNS or REQUIRED section.

•

A variable in a REXX expression within the COMPUTE section if the fieldname is specified in the COLUMNS or
REQUIRED section as record-type.input-field or input-field and input-field is also fully qualified. e.g.

 COMPUTE: /* Update compute-field "NBLKRECS" */
 NBLKRECS = SOURCE.BLKSIZE % SOURCE.LRECL /* Number of fixed length source records/block. */

•

A text substitution variable in a print expression if the fieldname is specified in the COLUMNS or REQUIRED
section as record-type.input-field or input-field and input-field is also fully qualified. e.g.

 BREAK: /* Trigger control break following change in "SOURCE.DSN" value. */
 SOURCE.DSN HEADING("Copy Input Dataset:" SOURCE.DSN) /* SOURCE.DSN value in header. */

•

Computed Fields

A computed field represents a value that is computed from other field values (input record fields, built-in fields and/or other
computed fields). A computed field is referenced as compute-field throughout this manual.

A compute-field value is established by a REXX routine specified by the Report Definition COMPUTE section. Therefore,
compute-field is actually a REXX variable name whose value is the result returned by a valid REXX expression. In addition
to the standard functions available in TSO/E REXX, the REPORT utility includes a number of built-in function. (See
"Appendix B. Built-in functions" for details.)

The COMPUTE REXX routine is executed for each input record or record segment. Therefore, any change in input record
field values or built-in field values are established before re-computing the compute-field values.

If a compute-field value needs to be initialised prior to processing the first input record (and so before the first execution of
the COMPUTE REXX routine), then this can be done in the BROWSE-EXIT or INIT-EXIT REXX routines.

The default length of a compute-field value is the maximum of the widths specified on all references to the compute-field
name in the REPORT definition. If no widths are specified, the default length is 9 (equal to the REXX NUMERIC DIGITS
default).

A compute-field name may be used in any of the following sections:

COLUMNS The fieldname identifier of a column definition for which values are displayed in the report.
BREAK The fieldname for which a change in value will trigger a control break in the printed report.
BREAK
FOOT
HEAD

As a print expression element. A compute-field may be specified to represent a variable fragment
of text in report page headings, page footings and control break lines.

SORT The fieldname on which output report detail lines will be sorted.
STATISTICS The fieldname identifying a report column for which statistical values may be generated.

REPORT Definition Unqualified

2024/09/02 11:04:59 FileKit REPORT Utility 120

Computed Field Specification

A compute-field name matches the name of a variable used in the COMPUTE section REXX routine.

To distinguish it from an record input field (input-field), whenever compute-field is referenced in report definition sections
other than COMPUTE and BROWSE-EXIT, it must be specified with a colon (":") symbol prefix. This prefix character is used
only to identify the field name as a compute-field and is not part of the compute-field name itself. e.g. A compute-field name
"MyValue" is identified throughout the report definition as ":MyValue".

The following example demonstrates reference to a compute-field "TimeDiff" within a report definition.

 COMPUTE:
 TimeDiff = Secs2Time(Time2Secs(ENDTIME) - Time2Secs(STARTTIME))

 COLUMNS:
 MEMBERNAME "Member"
 STARTTIME "Arrival"
 ENDTIME "Departure"
 :TimeDiff "Elapsed Time|(hhh:mm:ss.tt)"

 SORT:
 :TimeDiff

Built-in Fields

The REPORT utility supports a number of built-in fields whose values may update over the course of the program
execution. A built-in field is referenced as built-in-field throughout this manual.

Built-in fields include values for sequence number of the current output detail line, number of items in a control break group,
page number, current date, day and time, input dataset name and input record number. See "Appendix A. Built-in fields" for
supported built-in-field names and descriptions.

A built-in-field name may be used in any of the following sections:

BREAK
FOOT
HEAD

As a print expression element. A built-in-field may be specified to represent a variable fragment of
text in report page headings, page footings and control break lines.

COLUMNS The fieldname identifier of a column definition for which values are displayed in the report.
COMPUTE As a variable in a REXX expression. A built-in-field may be used to resolve the value of a

compute-field.

Built-in Field Specification

All built-in-field names begin with a hash ("#") character and must match the name of one of the standard built-in fields
supported by the REPORT utility.

In the following, the page heading will contain the current date, time and day name at which the report was generated as
well as the page number.

 HEAD:
 #TODAY #DAYNAME / "Page" #PAGE (5,RIGHT)

REPORT Definition Computed Fields

2024/09/02 11:04:59 FileKit REPORT Utility 121

Print Expressions

A print expression (referenced as print-expression) is used in BREAK, HEAD and FOOT sections to build a line of text to be
displayed in a printed report.

A print expression contains a number of elements, each representing a fragment of text. Each print expression element may
be a character literal string constant, a field name variable or a number of blanks. The order in which the elements occur in
the expression defines the order in which their values occur in the output text.

For BREAK lines only, the print expression may also contain <NEWLINE> tags to allow a break line to span multiple report
lines. For FOOT and HEAD sections, lines occupy multiple report lines if multiple footer/header line definitions are specified.

Examples:
Sample report definition with HEAD, FOOT and BREAK sections containing print expressions:

 HEAD:
 #TIMESTMP / 'Album Tracks for Artist:' ALBUM-ARTIST (25,RIGHT) /

 FOOT:
 / 'Page' #PAGE (5) /* Page number details right aligned. */

 REQUIRED:
 TRACK.ALBUM_ARTIST
 TRACK.TOTAL_TIME

 COLUMNS:
 ALBUM.NAME ('Album Name')
 TRACK.TRACK_NUM ('Track Number' RIGHT)
 TRACK.NAME ('Track Name')
 :DURATION ('Running Time' RIGHT) 12 RIGHT

 SORT:
 ALBUM.NAME
 TRACK.TRACK_NUM

 COMPUTE:
 DURATION = Secs2Time(TOTAL_TIME) /* e.g. 228.093 seconds = 00:03:48.093 */

 BREAK:
 ALBUM.NAME NOTOTAL \
 FOOTING(\
 'Number of tracks on album' NAME (30) 0 ':' #ITEMS \
 <NEWLINE> 38 'Last track length:' :DURATION (9,RIGHT) \
)

Syntax:

print-expression

 +---+
 v |
 >>---+--+-- input-field ----+--+-------------------------+-----------------+-><
 | | | | | |
 | +- :compute-field --+ +-- (--| Options |--) --+ |
 | | | (1) |
 | +-- built-in-field -+ |
 | | | |
 | +- 'literal' -------+ |
 | |
 +------ gap --+
 | |
 +------ <NEWLINE> ---+
 (2)

(1) At least 1 blank space must exist before the open parenthesis in order to avoid being interpreted as a parenthesised input field
subscript representing an array element.

(2) <NEWLINE> is valid only for break line text defined in the BREAK section.

REPORT Definition Print Expressions

2024/09/02 11:04:59 FileKit REPORT Utility 122

Options:

 (3)
 |--+---------+-+----------+-+---------+-+--------------------------------+-->
 | | | | | | | |
 +- width -+ +- Left ---+ +- STRIP -+ +- SUBSTR(start -+--------+-)
 | | | |
 +- Right --+ +- ,len -+
 | |
 +- Centre -+
 +- Center -+

 >--+----------------+---|
 | |
 +-- AVerage -----+
 +-- MAXimum -----+
 +-- MINimum -----+
 +-- NBTOTal -----+
 +-- NZAverage ---+
 +-- NZMinimum ---+
 +-- TOTal -------+
 (4)

(3) Options may be comma (",") or blank separated.

(4) Statistics parameters are valid only for break line that follows the control group as defined in the BREAK section. (i.e. invalid in
HEAD, FOOT and BREAK HEADING print expressions.)

Parameters:

input-field
A field identifier that uniquely identifies an input record field.

The input-field specification must match an input-field specified in the COLUMNS or REQUIRED report definition
sections, except that the record mapping structure name must be excluded. i.e. If the required field is defined in the
COLUMNS section using a fully qualified input-field, then the same fully qualified input-field specification must be
used in the print-expression but with its first (record-type) qualifier removed.

If print-expression is for a header line (HEAD or BREAK HEADING), then the value of an input-field element is
obtained from the first report record that follows the heading. For footing lines (FOOT) and all other BREAK lines
that appear after the control group (BREAK AVERAGE, FOOTING, MAXIMUM, MINIMUM, NZAVERAGE,
NZMINIMUM and TOTAL), the value of an input-field element is obtained from the last report record written.

In the above example, ALBUM-ARTIST is a field defined in the input records mapped by record-type TRACK. It is
not included as a column in the report output (COLUMNS section) so it must be referenced as a REQUIRED field.
The page header line will replace input-field ALBUM-ARTIST with the artist name from the first detail line on the
page.

Similarly, NAME is a field defined in the input records mapped by record-type ALBUM. The control break footing
line will replace input-field NAME with the album name from the last detail line of the control group.

:compute-field
The name of a computational field defined in the COMPUTE section of the report definition. Note that
compute-field must be prefixed by a colon (":") symbol to identify it as a computational field name.

Note that, a compute-field has default alignment "LEFT" and a minimum width of 9 characters. The default width is
either 9, or a value greater than 9 and equal to the largest width value specified for the compute-field anywhere
within the report definition.

If print-expression is for a header line (HEAD or BREAK HEADING) and a compute-field is based on input-field
values, then the value of the compute-field element will be based on the input-field values obtained from the first
report record that follows the heading. Otherwise, for footing lines and all other BREAK lines that appear after the
control group, the value of the compute-field element will be based on input-field values obtained from the last
report record written.

In the above example, DURATION is a computational field based on input record field TOTAL_TIME. The control
break footing line will replace compute-field :DURATION with the duration value computed from input fields in the
last detail line of the control group.

built-in-field
The name of a REPORT utility built-in field.
See Appendix A. built-in fields for the complete reference of built-in fields.

Note that all REPORT built-in-fields begin with a hash ("#") symbol.

'literal'
A literal text string enclosed in quotation marks (") or apostrophes ('). The text string will appear without the
enclosing characters in the printed output.

REPORT Definition Print Expressions

2024/09/02 11:04:59 FileKit REPORT Utility 123

In the above example, 'Album Tracks for Artist:', 'Page', 'Number of tracks on album', ':' and 'Last track length:' are
all literal text strings.

width
A width value may be specified in parentheses "()" following the input-field, :compute-field, built-in-field or 'literal'
element to which it applies. The width value specifies the number of characters in the printed break line that will be
reserved for the element's values (the element's print area).

The default width of a field name element is the maximum width of the field. For input fields, this is the maximum
field length as defined in the structure; for built-in fields, it is the width assigned internally to the particular field; for
compute fields, a defualt width of 9 is assumed. Alternatively, for literal elements, the default width is set to be the
length of the literal value.

Unless STRIP is specified, the element value will be truncated or padded with blanks to fit the specified width
number of characters.

At least 1 blank space must exist between the opening parenthesis ("(") and the preceding element specification. If
other options (alignment, STRIP, SUBSTR) are also specified, then they must be enclosed within the same set of
parentheses with blank or comma (",") separators.

In the above example, input-field ALBUM-ARTIST in the header is padded or truncated at 25 characters,
built-in-field #PAGE in the footer at 5 characters and the input-field NAME in the break footer at 30 characters.

gap
Represents a number of blank characters to be printed between the previous and next element print areas. The
default gap value is 1 (i.e. 1 blank will be inserted between element print areas).

If specified at the start of a print line, this number of blanks will occur before the start of the text. The default is not
to insert blanks at the start of the print line so that text begins at the very beginning of the print line.

A zero (0) value may be used to suppress blanks and so join together 2 element print areas.

In the above example, a zero gap value is specified between the NAME and ':' elements in the break footing line
definition so that no blanks are inserted between the area reserved for album name and the following colon (":")
symbol. Also, a gap value of 38 exists at the start of the next print line to insert 38 blanks before the start of text
that follows. This serves to align ":" following 'Last track length' with the ":" on the line before.

AVERAGE | MAXIMUM | MINIMUM | NBTOTAL | NZAVERAGE | NZMINIMUM | TOTAL
Applicable only to field elements (input-field, compute-field or built-in-field) which belong to a print expression that
defines a break footing line of text. i.e. any BREAK line definition (other than BREAK HEADING) that appears after
the control group.

One of these parameters may be specifies to indicate that the relevant statistical field break value will be output
instead of the field value obtained from the last control group detail line. Statistics values are displayed below the
column of values to which they apply. However, using this method to display statistical data allows positioning of
values anywhere within a line that follows a control group of lines. What is more, it allows use of statistical values
generated from fields not displayed as a column in the report detail lines (i.e. a field defined in the REQUIRED
section as opposed to the COLUMNS section).

In the example above, the FOOTING line print expression for the ALBUM.NAME BREAK definition may be
updated as follows so that, for detail lines in the last control group, the average value for compute-field
"DURATION" is displayed instead of the value obtained from the last detail line of the control group.

 BREAK:
 ALBUM.NAME NOTOTAL \
 FOOTING(\
 'Number of tracks on album' NAME (30) 0 ':' #ITEMS \
 <NEWLINE> 35 'Average track length:' :DURATION (AVERAGE,9,RIGHT) \
)

LEFT | RIGHT | CENTRE | CENTER
An alignment (LEFT, RIGHT, CENTRE or CENTER) may be specified in parantheses "()" following the input-field,
:compute-field, built-in-field or 'literal' element to which it applies. The alignment specifies how a value represented
by the element will be aligned within the print area reserved for that element's values.

For input fields, the default alignment is determined by the data type of the field element; for built-in fields, it is the
alignment assigned internally to the particular field; for compute fields and literal elements the default alignment is
"LEFT".

LEFT will align the value on the left of the element's print area and, if necessary, pad or truncate on the right of the
value. RIGHT will align the value on the right of the element's print area and, if necessary, pad or truncate on the
left of the value. CENTRE or CENTER will centralise the value within the element's print area and, if necessary,
pad or truncate evenly on both the left and right of the value.

At least 1 blank space must exist between the opening parenthesis ("(") and the preceding element specification. If
other options (width, STRIP, SUBSTR) are also specified, then they must be enclosed within the same set of
parentheses with blank or comma (",") separators.

In the above example, (25,RIGHT) follows the ALBUM-ARTIST input-field element in the page header line
definition ensuring that the artist name is right adjusted within a print area width of 25 characters. Similarly,
(9,RIGHT) follows the :DURATION :compute-field element in the break footing line definition. This defines a print

REPORT Definition Print Expressions

2024/09/02 11:04:59 FileKit REPORT Utility 124

area width of 9 characters in which the elapsed time value (format HH:MM:SS.mmm) are right aligned. This means
that the duration values will appear in the format MM:SS.mmm with the number of hours value (HH:) on the left of
the value being truncated.

<NEWLINE>
Valid only in BREAK line print expressions, <NEWLINE> starts a new print line in the printed text.

If no print expression elements exist before <NEWLINE>, then the contents of that line will be empty. Similarly, if
<NEWLINE> is specified last in the print expression, the print line that follows will be blank.

STRIP
STRIP may be specified in parantheses "()" following the input-field, :compute-field, built-in-field or 'literal' element
to which it applies. STRIP specifies that all leading and trailing blanks will be stripped from the element value when
it appears in the printed line.

If STRIP is specified, then the default or specified width value will define the maximum width of the element text
instead of the size of the element print area. (The element print area will be equal to the length of the stripped text.)

At least 1 blank space must exist between the opening parenthesis ("(") and the preceding element specification. If
other options (alignment, width, SUBSTR) are also specified, then they must be enclosed within the same set of
parentheses with blank or comma (",") separators.

SUBSTR(start[,len])
SUBSTR may be specified in parantheses "()" following the input-field, :compute-field, built-in-field or 'literal'
element to which it applies. SUBSTR may be used when the required output element text is a sub-string of the
element value.

SUBSTR specifies start, the position within the element value of the first output element text character, and
optionally len, the number of element value characters. These parameters appear in parentheses immediately
following the SUBSTR keyword and are separated by blanks or a comma (",").

If len is not specified, then the substring value will begin at the start character position and end at the last character
in the element value. If len extends beyond the last character of the element value, then the element text will be
padded with blanks.

Stripping of leading and trailing blanks, or alignment within the element's print area (width) will occur on the
sub-string of the element's value.

REPORT Definition Print Expressions

2024/09/02 11:04:59 FileKit REPORT Utility 125

Report Definition Sections

A REPORT definition is split into a number of sections. Each section begins with a section header and ends when a new
section header or the end of the REPORT definition input is encountered.

The following describes the use and syntax of control statements for each section header within the REPORT definition.

A section header is recognised as being the first (or only), blank delimitted word on a report definition control statement that
ends with a colon (":") character. If the word is not one of the supported section keywords, then all control statements that
follow it will be ignored up to the next section header.

In the following example, the live report page header definition will be ignored since "XHEAD" is not a recognised section
header. Syntax processing begins again at the "HEAD" section and so a temporary page header including the text
"##UNDER DEVELOPMENT##" will be used.

 XEAD:
 #TIMESTMP / "Access Report" / "PAGE" #PAGE (RIGHT,4)

 HEAD:
 #TIMESTMP / "Access Report ##UNDER DEVELOPMENT##" / "PAGE" #PAGE (RIGHT,4)

Section headers may be specified more than once within the report definition in which case control statements that follow
will be treated as a continuation of the original section header specification.

In the following example, the COLUMNS section is interrupted by the COMPUTE section. The column definition control
statements in the second COLUMNS section are treated as if they had been inserted immediately following the
"zConnected" column definition control statement. Note that it is not necessary for a computed field definition (in a
COMPUTE section) to occur before its use in any other section. Therefore, the COMPUTE section containing the definition
of DURATION may occur following the column definition :DURATION in the report definition.

 COLUMNS:
 SMF119#02_TCP_Connection_Termination.zRName ('RESOURCE')
 SMF119#02_TCP_Connection_Termination.zConnectStart ('CONNECTION|START')
 SMF119#02_TCP_Connection_Termination.zConnectEnd ('CONNECTION|END')

 COMPUTE:
 DURATION = Secs2Time(Time2Secs(zConnectEnd) - Time2Secs(zConnectStart))

 COLUMNS:
 :DURATION ('DURATION|HHH:MM:SS.SS')
 SMF119#02_TCP_Connection_Termination.zInBytes ('INBOUND|BYTES')
 SMF119#02_TCP_Connection_Termination.zOutBytes ('OUTBOUND|BYTES')
 SMF119#02_TCP_Connection_Termination.zTermCode ('TERM CODE DESC')

Section Headers:

BLANKWHENZERO BIZ
BLANKIFZERO
BWZ

Display zero column values as blank.

BREAK Define report break columns and break line text.
BROWSE-EXIT BROWSEEXIT Exit routine executed at start of input record BROWSE processing.
COLUMNS Define columns to appear in the report.
COMPUTE COMP Define computed field expressions.
DISPLAY-EXIT DISPLAYEXIT Exit routine executed on display of report output.
FILTER Specify filter to be applied to input records.
FOOT Define printed report page footing lines.
INIT-EXIT INITEXIT Exit routine executed at start of input record FILEIO processing.
INPUT Define the input data object.
HEAD Define printed report page header lines.
MAP Define field mapping for input records.
OPTIONS OPTION Specify REPORT execution options.
OUTPUT Define an output data object.
REPEAT Specify input record types for which a new detail line will be generated.
REQUIRED REQUIRE Identify input record fields required for computed fields and non-column

detail lines.
RESET Specify input record types whose values are to be reset following output

of a detail line.
SORT Identify fields on which input records are to be sorted.
STATISTICS STATS

TOTAL
TOTALS

Specify report columns for which statistical information will be gathered.

TRANSLATE Specify input field value character translation table.

REPORT Definition Report Definition Sections

2024/09/02 11:04:59 FileKit REPORT Utility 126

BLANKWHENZERO

Overview:
Specifies one or more columns for which any zero (0) value will be output as blank. This is of particular use in a printed
report where a column contains mostly zero values. These values may be displayed as blanks thus making the non-zero
values more prominent.

Each BLANKWHENZERO column fieldname occupies a separate report definition statement. A BLANKWHENZERO
fieldname must represent an input-field and must match exactly one of the fieldnames specified in the COLUMNS section.

BLANKWHENZERO is applicable only to columns defined by input fields assigned a numeric data type. Specification of a
fieldname which is of a non-numeric data type will have no effect on the output report.

BLANKWHENZERO applies to all types of output (BROWSE, CSV, JSON, PRINT and XML).

Examples:

BLANKWHENZERO:
 SMF119#02_TCP_Connection_Termination.zInBytes
 SMF119#02_TCP_Connection_Termination.zOutBytes

Output report columns, defined by numeric input fields zInBytes and zOutBytes of the SMF type 119 sub-type 2 record for
TCP Connection Termination, will output a blank in place of a zero value.

Syntax:

 (1) +-----------------+
 v |
 >>-- BLANKWHENZERO: --------+--- fieldname ---+------------------------------><

(1) Each fieldname must be specified on a separate control statement.

Synonyms:

BLANKWHENZERO BWZ BLANKIFZERO BIZ

Parameters:

fieldname
An input record field name of numeric data type for which zero (0) values will be output as blanks. Each fieldname
specification must also exist as an output column definition in the COLUMNS section.

REPORT Definition BLANKWHENZERO

2024/09/02 11:04:59 FileKit REPORT Utility 127

BREAK

Overview:
The BREAK section specifies one or more control break definitions.

Although control break lines apply only to PRINT type output, break definitions may be used in conjunction with the DETAIL
option to control the number of CSV, JSON or XML output lines written for each break key field value.

A report control break is a break in the printed detail line output.

Each break definition defines a break key field and the (input or compute) source field from which values are obtained. By
default, a break key field has a format that matches that of its source field.

A control break occurs when there is a change in the value of the break key field. Consequently, the detail lines printed
between each break are grouped by a common (break key) field value. These groups of detail lines constitute a control
group.

Although not mandatory, a break key field is usually a field on which the report lines have been sorted, either prior to
processing by the REPORT utility or via a report definition SORT control statement.

BREAK may also define an additional control break definition to customise the report output following the last detail line of
the report. This control break is referenced using the pseudo key column field name, #GRAND, which is triggered after the
last detail line is printed.

A control break definition may be used to specify a customised header to be printed before the detail lines belonging to a
control group, as well as a customised number of blank lines and/or footer lines to be printed following a control group.
Footer lines include lines containing statistical values (totals, averages, etc.) for columns nominated as statistics columns in
the STATISTICS section. If a STATISTICS section does not exist, statistics will be generated for all columns of numeric
data type by default.

Each control break definition occupies a single statement of the BREAK section and begins with the field name from which
the break key field is constructed. Each control break is also assigned a level number within the break hierarchy. This is
equal to 1 plus the sequence number (1,2,..,n) of the matching key column field name in the SORT section. Control break
level 1 is reserved for the #GRAND control break.

When a control break is triggered, a control break is also triggered for all control break definitions with a higher break level
number. Break output lines are printed first for the break with the highest level number and then for each descending level
to the level number at which the control break was initially triggered.

Notes:

 A control group identifies all detail lines printed between two instances of a break triggered by a particular control
break level.

•

 By default, each of the defined (or implied) statistics columns is underlined before control break lines are printed.
For the #GRAND break, the equals ("=") symbol is used as the underline character and, furthermore, the printed
underline is repeated following the break lines to mark the end of report text. For all other control breaks, the minus
("-") symbol is used as the underline character.

Option BRKULINE(NO) will suppress all printed lines containing statistics column underlining.

•

 If the number of control break lines following the control group is greater than the number of lines remaining on
the page, then the break lines are printed at the start of the new page following the page title, column headers and
any repeated control break headings (see control break parameter REPEAT).

Option SPLITBREAK(YES) will allow the block of break lines to wrap onto a new page.

•

Examples:

Example 1 - Single Control Break:

SORT:
 SMF030_Identification.zJOBNAME
 SMF030_Identification.zRST

BREAK:
 SMF030_Identification.zJOBNAME

STATISTICS:
 SMF030_IO_Activity.zTEP
 SMF030_IO_Activity.zTPT
 SMF030_IO_Activity.zTGT

REPORT Definition BREAK

2024/09/02 11:04:59 FileKit REPORT Utility 128

The above example will trigger a control break following a change to the job name value in field zJOBNAME. By default,
sub-total values will be printed following the nominated statistics columns zTEP (EXCP Count), zTPT (TSO/E terminal write
count) and zTGT (TSO/E terminal read count).

Example 1 - Multiple Control Breaks:

SORT:
 SMF119#02_TCP_Connection_Termination.zRName
 SMF119#02_TCP_Connection_Termination.zConnectStart

BREAK:
 SMF119#02_TCP_Connection_Termination.zRName \
 TOTAL() \
 HEADING(\
 <NEWLINE> 'This is a header for group:' zRNAME (RIGHT,10) \
 <NEWLINE> '--------------------------------------') \
 REPEAT \
 SPACEAFTER(page)

 SMF119#02_TCP_Connection_Termination.zConnectStart 10 \
 NZAVERAGE \
 MAXIMUM \
 NZMINIMUM \
 SPACEBEFORE(1) \
 SPACEAFTER(3)

 #GRAND FOOTING('End of TCP Connection Termination Report') \
 SPACEBEFORE(10)

3 control breaks are defined, 1 for each of the sorted key columns and 1 for the #GRAND grand totals output following the
last detail output line. #GRAND always represents the 1st level control break. 2nd level control breaks occur when the value
of field zRName changes, 3rd level control breaks when the value of field zConnectStart changes. A change in the
zRName value will first trigger a 3rd level control break for zConnectStart before triggering the 2nd level control break for
zRName.

Each new resource name (zRName) control group will start on a new page of the report and will be preceeded by 3 header
lines. A change in the first 10 characters of the zConnectStart timestamp value (i.e. the date portion) will trigger intermediate
control breaks within each zRName control group.

REPORT Definition BREAK

2024/09/02 11:04:59 FileKit REPORT Utility 129

Syntax:

 (1) +------------------------------------+
 v |
 >>-- BREAK: ------------+--- | Control Break Definition | ---+--------------><

(1) Control Break definitions must be specified on separate control statements.

Control Break Definition:

 |---+-- fieldname --+---------------+--+------------------------------------->
 | | | |
 | +--| Options |--+ |
 | |
 +-- #GRAND ------------------------+

 (2)(3)
 +---+
 v |
 >--+---+--+-------------+--------->
 | | | |
 +-- AVERAGE ----+--+------------------------+-+ +-- NOTOTAL --+
 +-- MAXIMUM ----+ | | | (4)
 +-- MINIMUM ----+ +- (print-expression) -+ |
 +-- NZAVERAGE --+ |
 +-- NZMINIMUM --+ |
 +-- TOTAL ------+ (4) |
 | |
 +-- FOOTING ----+---- (print-expression) ---+
 +-- HEADING ----+

 >--+-------------+----+------------+-->
 | | | |
 +-- COLHEAD --+ +-- REPEAT --+

 +-- SPACEAFTER(1) --+ +-- SPACEBEFORE(0) --+
 | | | |
 >--+--------------------------------------+--+---------------------------+--|
 | | | |
 +-- SPACEAFTER(-+--- nlines ---+-) --+ +-- SPACEBEFORE(nlines) --+
 +--- PAGE -----+
 +--- PAGE1 ----+

(2) Following fieldname/#GRAND and value-width, parameters may be entered in any order.
(3) Only 1 occurrence of each statistical parameter (AVERAGE, FOOTING, HEADING, MAXIMUM, MINIMUM, NZAVERAGE,

NZMINIMUM and TOTAL) may be specified.
(4) TOTAL and NOTOTAL are mutually exclusive. If both are specified, then the last occurrence will be obeyed.

Options:

 |--+---------+-+----------+-+---------+-+--------------------------------+--|
 | | | | | | | |
 +- width -+ +- Left ---+ +- STRIP -+ +- SUBSTR(start -+--------+-) -+
 | | | |
 +- Right --+ +- ,len -+
 | |
 +- Centre -+
 +- Center -+

Parameters:

fieldname
The fieldname is an input-field or compute-field field name specification from which break key field values are
obtained. A control break will be triggered whenever there is a change in the break key field value.

By default, the format of the break key field is the same as the default format of fieldname (i.e. it uses the field's
default (maximum) field width and a value alignment determined by the data type of the field). Note that fields of
numeric data types are right aligned, otherwise field values are left aligned by default.

The break key field format may be controlled using width, alignment, STRIP and/or SUBSTR options.

width
Specifies the width of the break key field. If width is greater than the default field width of fieldname, then blank
padding will occur on the obtained field value. If it is less than this field width, then truncation of the fieldname value
will occur.

REPORT Definition BREAK

2024/09/02 11:04:59 FileKit REPORT Utility 130

For example, suppose an 8 character (zJOBNAME) input field contains left aligned job name values in a format
which comprises a 4 character prefix followed by a 4 character sequence number. The following defines a left
aligned break key field of width 4 so that the break key is the first 4 (truncated) characters of the job name value.
This means that a control break will only be triggered when there is a change in the job name prefix.

zJOBNAME 4

#GRAND
#GRAND refers to the break that occurs at the end of the report only when all detail lines have been printed. There
is only 1 #GRAND control group which includes all detail lines.

Unless GRANDTOTAL(NO) has been specified in the OPTIONS section, grand totals will be printed for statistics
columns at the end of the report. The #GRAND control break provides the method by which the output header,
statistics and footer lines may be configured for the #GRAND control break.

For example, the following will output the maximum value found in each statsitics column in addition to the default
grand totals:

#GRAND MAXIMUM

AVERAGE[(print-expression)]
Indicates that the control break print lines are to include a line containing the average value for each statistics
column. Each statistics column's average value is calculated from all values belonging to that column within the
control group. The average value is aligned below its statistics column in the output print line. The default is not to
print average values at each break.

The optional, parenthesised print-expression may be used to specify the comment text to be printed before the
average values. The print expression contains any number of text fragments specified as either literal text or field
variables representing computed, built-in or input data values. See print-expression in this section for a detailed
description.

For example, the following control break average specification:

zRName AVERAGE('** Average values for' zRName '=')

will print the following text before the average values:

** Average values for XXXXX =

"XXXXX" is the resource name value in column field zRName as found in the last detail line of the control group.

If AVERAGE is specified without print-expression, then the following default comment text is used prefixed by a
variable number of blanks equal to twice the break level value plus 1.

Average Value

A null literal may be specified for print-expression if comment text is to be suppressed.

After the comment text, the average values are aligned under each statistics column. If the comment text occupies
the area below the first statistics column, then all the average values are printed on the next line.

CENTRE|CENTER|LEFT|RIGHT
Specifies the data alignment of the break key value within the break key field. The break value may be left
adjusted, right adjusted or centralised within the defined break key field width (width).

If fieldname is an input field of numeric data type, then the default break key value alignment is RIGHT. Otherwise,
the default alignment is LEFT.

Aligned values, padded or truncated to the data width (width), are used as the break key.

COLHEAD
Applicable only if printing of column headers has not been suppressed by the OPTIONS section entry
COLHEAD(NO).

COLHEAD may be specified on a control break definition to indicate that, when the control break is triggered,
column header lines are to be re-printed immediately prior to printing the next break heading line for any control
break, or otherwise the first line of the next control group.

By default, column header lines are only printed at the start of a new page following any page header lines. The
COLHEAD option allows the column header lines to be re-printed at lines within the page that follow report detail
lines.

For example, the following defines 2 control breaks. The 1st (highest) level in the control break hierarchy is for
input field zRName, the 2nd (lowest) level is for input field zRDate.

zRName HEADING('Resource') NOTOTAL FOOTING('End of Resource:' zRName)
zRDate HEADING('Date') TOTAL COLHEAD

A change in the zRDate value will trigger the 2nd level control break and so will first print the TOTAL values for
statistics columns, and then re-print the column header lines before printing the 2nd level control break heading
"Date".

REPORT Definition BREAK

2024/09/02 11:04:59 FileKit REPORT Utility 131

If a change in the zRName value occurs, then this will trigger first the 2nd level (zRDate) control break and then the
1st level (zRName) control break. The TOTAL values will be printed for the 2nd level (zRDate) control break,
followed by the FOOTING text for the 1st level (zRName) control break. Because COLHEAD is flagged by the 2nd
level break, column header lines are re-printed before printing the header text for the 1st (zRName) and then 2nd
(zRDate) level control breaks.

FOOTING(print-expression)
Specifies text to be printed after the control group's detail lines and following the control break statistics lines. The
default is not to print break footing lines.

A parenthesised print-expression is mandatory and specifies the footing text. The print expression contains any
number of text fragments specified as either literal text or field variables representing computed, built-in or input
data values. See print-expression in this section for a detailed description.

For example, the following control break footing specification:

DEPT FOOTING('-#- End of' DEPT 'statistics for' DATE (10) '-#-')

will print the following text before the footing values:

-#- End of XXXX statistical for XXXX/XX/XX -#-

"XXXX" is the department name in column field DEPT and "XXXX/XX/XX" is the first 10 characters of the date
value in column field DATE as found in the last detail line of the control group.

The "<NEWLINE>" item in print-expression may be used to output the break footing text over multiple report lines
and also to print null (blank) lines.

HEADING(print-expression)
Specifies text to be printed before the control group's detail lines but following column header lines. The default is
not to print break heading lines.

A parenthesised print-expression is mandatory and specifies the heading text. The print expression contains any
number of text fragments specified as either literal text or field variables representing computed, built-in or input
data values. See print-expression in this section for a detailed description.

For example, the following break heading parameters:

zRName HEADING('Report for resource' zRName <NEWLINE> '----------------------------')

will print the following break heading text at the start of the control group:.

Report for resource XXXXXXXX

"XXXXXXXX" is the resource name value in the column field zRName as found in the first detail line of the control
group to be printed following the break heading.

If REPEAT is also specified on the control break definition, the heading text will be repeated at the start of each
new page.

MAXIMUM[(print-expression)]
Indicates that the control break print lines are to include a line containing the maximum value for each statistics
column. Each statistics column's maximum value is determined from all values belonging to that column within the
control group. The maximum value is aligned below its statistics column in the output print line. The default is not
to print maximum values at each break.

The optional, parenthesised print-expression may be used to specify the comment text to be printed before the
maximum values. The print expression contains any number of text fragments specified as either literal text or field
variables representing computed, built-in or input data values. See print-expression in this section for a detailed
description.

For example, the following control break maximum specification:

zJOBNAME MAXIMUM('** Maximum values for' zJOBNAME '(' 0 #ITEMS 'Items)')

will print the following text before the maximum values:

** Maximum values for XXXXX (n Items)

"XXXXX" is the job name value in column field zJOBNAME as found in the last detail line of the control group and
"n" is the number of items in the control group.

If MAXIMUM is specified without print-expression, then the following default comment text is used prefixed by a
variable number of blanks equal to twice the break level value plus 1.

Maximum Value

A null literal may be specified for print-expression if comment text is to be suppressed.

REPORT Definition BREAK

2024/09/02 11:04:59 FileKit REPORT Utility 132

After the comment text, the maximum values are aligned under each statistics column. If the comment text
occupies the area below the first statistics column, then the maximum values are printed on the next line.

MINIMUM[(print-expression)]
Indicates that the control break print lines are to include a line containing the minimum value for each statistics
column. Each statistics column's minimum value is determined from all values belonging to that column within the
control group. The minimum value is aligned below its statistics column in the output print line. The default is not to
print minimum values at each break.

The optional, parenthesised print-expression may be used to specify the comment text to be printed before the
minimum values. The print expression contains any number of text fragments specified as either literal text or field
variables representing computed, built-in or input data values. See print-expression in this section for a detailed
description.

For example, the following control break minimum specification:

zTME 10 MINIMUM('Shortest elapsed times on' zTME (LEFT,10))

will print the following text before the minimum values:

Shortest elapsed times on XXXX/XX/XX

"XXXX/XX/XX" is the ISO date value in column field zTME as found in the last detail line of the control group.

If MINIMUM is specified without print-expression, then the following default comment text is used prefixed by a
variable number of blanks equal to twice the break level value plus 1.

Minimum Value

A null literal may be specified for print-expression if comment text is to be suppressed.

After the comment text, the minimum values are aligned under each statistics column. If the comment text
occupies the area below the first statistics column, then the minimum values are printed on the next line.

NOTOTAL
Suppress control break totals.

Unless option BRKTOTALS(NO), GRANDTOTAL(NO) or TOTALS(NO) has already been specified, then
NOTOTAL may be used to suppress the default action of printing totals statistics for the control break.

NOTOTAL and TOTAL are mutually exclusive parameters. If both are specified, then it is the parameter that is
specified last in the control break definition which is obeyed.

NZAVERAGE[(print-expression)]
NZAVERAGE is the similar to AVERAGE except that non-zero values are ignored when determining average
values. i.e. The accumulated total for a statistics column in the control group is split evenly between the total
number of non-zero items rather than the total number of items.

NZAVERAGE indicates that the control break print lines are to include a line containing the non-zero average value
for each statistics column. Each statistics column's non-average value is calculated from all non-zero values
belonging to that column within the control group. The average value is aligned below its statistics column in the
output print line. The default is not to print average values at each break.

The optional, parenthesised print-expression may be used to specify the comment text to be printed before the
average values. The print expression contains any number of text fragments specified as either literal text or field
variables representing computed, built-in or input data values. See print-expression in this section for a detailed
description.

For example, the following control break non-zero average specification:

zSTART 10 NZAVERAGE('Non-zero average elapsed times on' zSTART (LEFT,10) 0 '...')

will print the following text before the non-zero average values:

Non-zero average elapsed times on XXXX/XX/XX...

"XXXX/XX/XX" is the ISO date value in column field zSTART as found in the last detail line of the control group.

If NZAVERAGE is specified without print-expression, then the following default comment text is used prefixed by a
variable number of blanks equal to twice the break level value plus 1.

Average of NON-ZERO Values

A null literal may be specified for print-expression if comment text is to be suppressed.

After the comment text, the average values are aligned under each statistics column. If the comment text occupies
the area below the first statistics column, then the non-zero average values are printed on the next line.

REPORT Definition BREAK

2024/09/02 11:04:59 FileKit REPORT Utility 133

NZMINIMUM[(print-expression)]
NZMINIMUM is the similar to MINIMUM except that non-zero values are ignored when determining minimum
values.

NZMINIMUM indicates that the control break print lines are to include a line containing a non-zero minimum value
for each statistics column. Each statistics column's non-zero minimum value is determined from all non-zero
values belonging to that column within the control group. The non-zero minimum value is aligned below its
statistics column in the output print line. The default is not to print non-zero minimum values at each break.

The optional, parenthesised print-expression may be used to specify the comment text to be printed before the
minimum values. The print expression contains any number of text fragments specified as either literal text or field
variables representing computed, built-in or input data values. See print-expression in this section for a detailed
description.

For example, the following control break non-zero minimum specification:

zJOBNAME NZMINIMUM('Lowest non-zero values:')

will print the following text before the non-zero minimum values:

Lowest non-zero values:

If NZMINIMUM is specified without print-expression, then the following default comment text is used prefixed by a
variable number of blanks equal to twice the break level value plus 1.

Minimum of NON-ZERO Values

A null literal may be specified for print-expression if comment text is to be suppressed.

After the comment text, the minimum values are aligned under each statistics column. If the comment text
occupies the area below the first statistics column, then the minimum values are printed on the next line.

REPEAT
Applicable only if HEADING is also specified, REPEAT indicates that the control break heading text printed at the
start of the control group is also to be printed at the start of each new page following the page title and column
header lines.

Default is to print break headings only at the start of each new control group.

SPACEAFTER(nlines|PAGE|PAGE1)
Specifies nlines, the number of blank lines to be printed after the control break lines that follow the control group.
The default is to print 1 blank line.

If the number of lines remaining on the page is less than nlines, the surplus SPACEAFTER lines will be ignored
(i.e. blank lines and will not be printed at the start of the new page).

Alternatively, PAGE or PAGE1 may be specified to throw a new page following the last control break line. (PAGE1
will reset the page numbering on the new page back to 1.)

SPACEBEFORE(nlines)
Specifies nlines, the number of blank lines to be printed following the control group but before the control break
lines. The default is not to print any blank lines between the control group and the control break lines.

Note that, unless option BRKULINE(NO) is specified, the control break lines begin with a line containing statistics
column underline characters.

The number of SPACEBEFORE blank lines are included in the number of control break lines that occur after the
control group. Unless option SPLITBREAK(YES) has been specified, a new page occurs whenever this number of
control break lines exceeds the number of lines remaining on the page.

STRIP
Specifies that leading and trailing blanks that potentially exist in the value obtained from fieldname are to be
stripped prior to being aligned in the break key field.

Note that, if SUBSTR is also used, then the strip of leading and trailing blanks will occur on the substring value
obtained from fieldname.

By default, the value in the break key field is displayed in the totals statistics break line following the control group.
The break key field definition parameters (width, alignment, STRIP and SUBSTR) are also used for the print
element field definition within the generated totals line print expression. Therefore, if STRIP is used to define the
break key field, the value displayed in the totals line will be stripped of leading and trailing blanks.

SUBSTR(start[,len])
Specifies that the value obtained from fieldname is a substring of the field's value.

A start position (start) and optional length value (len) is specified in parentheses "()" immediately following the
SUBSTR keyword. The start value is the position in the field of the first character obtained from fieldname, and len
is the length of data to be obtained.

REPORT Definition BREAK

2024/09/02 11:04:59 FileKit REPORT Utility 134

Note that, if len is not specified, then the substring value will begin at the start character position and end at the last
character of the field value. If len extends beyond the last character of the input value, then the output value will be
padded with blanks.

If both SUBSTR and STRIP are used, then the SUBSTR operation will occur first so that leading and trailing blank
characters will be stripped fron the sub-string value and not from the original fieldname source field value.

The value obtained from the source field following a SUBSTR and/or STRIP is ultimately saved in the break key
field using the key field's alignment and width.

TOTAL[(print-expression)]
Indicates that the control break print lines are to include a line containing the total value for each statistics column.
Each statistics column's total value is calculated from all values belonging to that column within the control group.
The total value is aligned below its statistics column in the output print line.

The default is to print total values for each control break defined in the BREAK section and also for the #GRAND
control break, whether or not it has been explicitly defined. Note that if both TOTAL and NOTOTAL are specified,
then the occurrence that appears last within the control break definition will be obeyed.

Option BRKTOTALS(NO) will override this default and suppress totals for all, non-#GRAND control breaks
specified in the BREAK section for which TOTAL is not explicitly defined.
Option GRANDTOTAL(NO) will suppress output of totals for the #GRAND break regardless of whether TOTAL has
been explicitly defined.
Option TOTALS(NO) is equivalent to specifying both BRKTOTALS(NO) and GRANDTOTAL(NO).

The optional, parenthesised print-expression may be used to specify the comment text to be printed before the
total values. The print expression contains any number of text fragments specified as either literal text or field
variables representing computed, built-in or input data values. See print-expression in this section for a detailed
description.

For example, the following control break totals specification:

REGION TOTAL('** Totals **')

will print the following text before the totals values:

** Totals **

If totals are printed by default or TOTAL is specified without print-expression, then default comment text is used.
For standard (non-#GRAND) control breaks:

Totals for XXXXX (n Items)

For the #GRAND control break:

Grand Totals (n Items)

Where "XXXXX" is the is the break key field value obtained from the last report detail line printed before the control
break was triggered, and "n" is the number of items in the control group.

Both default text strings are indented so that the text starts in the same position for each ptint level. Furthermore,
the text is prefixed by a variable number of equals ("=") symbols and a single blank. The number of these symbols
is equal to 1 plus the total number of break levels minus the current break level, all muliplied by 2. For example, if
the current break level is 2 and there are a total of 4 break levels (including the #GRAND break level) then the
number of equal symbols prefixing the text is (1+4-2)*2 = 6.

A null literal may be specified for print-expression if comment text is to be suppressed.

After the comment text, the total values are aligned under each statistics column. If the comment text occupies an
area which overlaps the area below the first statistics column, then all the total values are printed on the next report
line.

print-expression
The print-expression is used to construct one or more lines of text to be included in each control break line of the
report. The format of a print-expression is described under section header "Print Expression".

The print expression contains a number of elements, each representing a fragment of text in the control break line.
Print expression elements may be a literal constant, a field name variable or a number of blanks and the order in
which they occur in print-expression defines the order in which their values occur in the final output text.

In addition to elements which represent text fragments, the print expression for control break lines may also
contain <NEWLINE> tags to allow a break line to span multiple report lines.

For HEADING break lines, the values of input-field elements are obtained from the first record in the control group
which follows the heading. Similarly, if a compute-field value is derived from one or more input-field values, then
the compute-field value will also reflect values obtained from the first record in the control group. All other break
lines appear after the control group and so, for these control break lines, the value of an input-field (or
compute-field) element is obtained from the last record in the control group.

REPORT Definition BREAK

2024/09/02 11:04:59 FileKit REPORT Utility 135

A print-expression may contain built-in-fields elements which are described in detail in Appendix A. built-in fields.
The following built-in-fields are of particular use in break line print expressions:

Built-in
Field

Description

#ITEMS The number of items (detail lines) in the control group. (Not applicable to HEADING break
lines.)

#SEQUENCE The report detail line sequence number. This is equivalent to the total number of items (detail
lines) that have been printed to the report so far. (It is the running total that will be reported as
the #GRAND break #ITEMS value.)

REPORT Definition BREAK

2024/09/02 11:04:59 FileKit REPORT Utility 136

BROWSE-EXIT

Overview:
The BROWSE-EXIT section will trigger use of Data Editor browse processing to format input record data. It identifies the
start of REXX program statements that are to be executed once only, immediately following initial browse of the structured
data.

The exit allows for additional processing of the browsed data, not performed naturally by the REPORT utility. For example,
you may wish to perform additional input record filtering based on data contained in more than one record. If the exit is used
only to initialise REXX variable (compute-field) values, then consider using an INIT-EXIT section instead.

Example:

Example 1 - Use BROWSE-EXIT to Perform Advanced Record Filtering:

In the following, input records reflect a music database hierarchy whereby a record containing artist information (record-type
"ARTIST") is followed by repeated groups of records. Each record group is comprised of one record containing recorded
album information (record-type "ALBUM") followed by a record for each album track (record-type "TRACK").

The example demonstrates use of the BROWSE-EXIT section to exclude album record groups that have only one
associated album track. Because this task requires logical processing, it can not be achieved using the FILTER section.

 BROWSE-EXIT:
 "SET MSGMODE OFF" /* Suppress Data Editor messages. */
 "HIDE" /* Hide excluded record shadow lines. */
 "TOP" /* Position at "Top of Data" line. */

 do forever /* Loop to "End of Data" */
 "NEXT ALBUM" /* Locate the next record of type "ALBUM" */
 if rc<>0 then leave /* No further ALBUM type records, so end processing. */
 "SET POINT .EXC1" /* Set a 1st exclude line label on current record. */

 /* ** First record following ALBUM record. This should be a TRACK record. ** */
 "DOWN 1"; rr=rc /* Locate the next record (save the RC). */
 "extract /DRECTYPE/" /* Get the current record type. */

 select
 when rr<>0 then /* "End of Data" */
 do; "EXCLUDE ALL .EXC1 .EXC1" /* Exclude the ALBUM record. */
 leave /* End processing. */
 end

 when drectype.1 <> "TRACK" /* ALBUM not followed by TRACK (zero album tracks). */
 do; "EXCLUDE ALL .EXC1 .EXC1" /* Exclude the ALBUM record. */
 "UP 1"; iterate /* Go back 1 line in case current is "ALBUM" the restart loop. */
 end

 otherwise "SET POINT .EXC2" /* Set a last exclude line label on current record. */
 end

 /* ** First record following 1st TRACK record. ** */
 "DOWN 1"; rr=rc /* Locate the next record (save the RC). */
 "EXTRACT /DRECTYPE/" /* Get the current record type. */

 select
 when rr<>0 then /* "End of Data" */
 do; "EXCLUDE ALL .EXC1 .EXC1" /* Exclude the ALBUM record. */
 leave /* End processing. */
 end

 when drectype.1 <> "TRACK" /* 1st TRACK not followed by 2nd TRACK (only 1 album track). */
 do; "EXCLUDE ALL .EXC1 .EXC1" /* Exclude the ALBUM & 1st TRACK record. */
 "UP 1" /* Go back 1 line in case current record is type "ALBUM". */
 end

 otherwise nop /* No operation if >1 album track. */
 end
 end

The REPORT processing will logically "Browse" the input records. The exit routine performs a loop which processes the
browsed records until End of Data is reached. Starting at the "Top of Data" record (i.e. before the first line of data), the loop
will perform the following logic:

Locate the next "ALBUM" record and set a line label ".EXC1".1.
Scroll down 1 line.2.
Check whether the record-type of the new line is "TRACK".3.
If not, exclude the "ALBUM" record only (0 tracks). Otherwise set a line label ".EXC2".4.
Scroll down 1 line.5.
Check whether the record-type of the new line is "TRACK".6.
If not, only 1 track exists for the ALBUM so exclude the "ALBUM" and "TRACK" records.7.
Repeat until return code > 0 (End of input data).8.

REPORT Definition BROWSE-EXIT

2024/09/02 11:04:59 FileKit REPORT Utility 137

Example 2 - Computed Field Initialisation:

In the following, the BROWSE-EXIT section is used to initialise 2 compute-field variables at the start of input record
processing.

The REXX statements in the COMPUTE section are executed before writing an output detail line. Assuming the input
records are sorted on "JobName", the "JobCount" value will keep a running total of the different job names encountered in
the input records.

Note, however, that if the BROWSE-EXIT section is present simply to initialise compute-field variables, then an INIT-EXIT
section should be used instead.

BROWSE-EXIT:
 JobCount = 0 /* Initialise Compute-field variables. */
 JobOld = ''

COMPUTE:
 if JobName <> JobOld then
 do; JobCount = JobCount+1 /* Increment count of different Job names. */
 JobOld = JobName /* Update last job name encountered. */
 end

Syntax:

 >>-- BROWSE-EXIT: -------------- REXX Control Statements --------------------><

Synonyms:

BROWSE-EXIT BROWSEEXIT

Parameters:

REXX Control Statements
Any number of valid REXX logical control statements may be specified to constitute an executable REXX routine.
A REXX error will occur if invalid statements are entered.

By default, CBLSDATA is the REXX environment and so any Data Editor primary commands may be executed as
part of the logic. This may include commands such as EXTRACT (to extract information about the data in view),
FIND, LOCATE, WHERE, NEXT, PREVIOUS, etc.

The REXX routine ends at the start of the next REPORT section or at the end of the REPORT definition input,
whichever is encoutered first.

REPORT Definition BROWSE-EXIT

2024/09/02 11:04:59 FileKit REPORT Utility 138

COLUMNS

Overview:
The COLUMNS section defines the content and appearance of detail lines to be written to printed report, CSV, XML or
JSON output.

Each statement in the COLUMNS section either identifies a column or a gap in the detail line. The order in which the
statements are provided determines the order in which the columns and gaps appear in the detail lines. A column definition
references a constant string 'literal' or a field name that either maps data in an input record, is a computed variable name or
a REPORT utility built-in field (e.g. #RECNUM returns the input record number).

Each column definition may also specify column header text and, for printed report output, the header text alignment,
column data width and data alignment.

A <NEWLINE> control statement will start a new detail line for the column definition statements that follow it. The column
definitions start in the first position of the next detail line.

Any number of column definitions may be specified and, for printed report output, the number of detail lines is limited only by
the defined page depth.

Input record fields used in the COLUMNS section to define report columns or otherwise listed in the REQUIRED section
determine the fields for which values will be extracted from input records. These field input-field names may then be
referenced in other REPORT definition sections. e.g. In print expressions used to generated page headings, footings and
control break lines.

Examples:

SMF Record Input:

COLUMNS:
 SMF030_Identification.zJOBNAME ('Job|Name' CENTRE)
 3
 SMF030_Identification.zSIT ('Job|Start')
 :Duration ('Job|Duration') 8
 SMF030_Identification.zRUD ('RACF|User')
 SMF030_Identification.zJESJOB ('JES|Jobname')
 '|' ('')
 SMF030_EXCP.zEXP.zDDN ('DDName')
 SMF030_EXCP.zEXP.zBLK ('EXCP|Blocks' RIGHT) 8 RIGHT
 SMF030_EXCP.zEXP.zBSZ.zBSZLarge ('Largest|Block' RIGHT) 6 RIGHT
 SMF030_EXCP.zEXP.zCUA ('Dev#')

The above example will output a single detail line of 9 columns.

Each column defined by a mapped field in the input data, is expressed by a field identifier. The field identifier is comprised of
one or more qualifiers, each separated by a dot/period ("."). The first qualifier ("SMF030_Identification", "SMF030_EXCP") is
the name of the record mapping structure (record-type) that maps the entire input record or, as in this case, a particular
segment of the type 30 SMF record to which the required field definition belongs.

The last qualifier ("zJOBNAME", "zSIT", "zRUD", "zJESJOB", "zDDN", "zBLK", "zBSZLarge", "zCUA") is the name of the
required field within the record mapping structure. Each intermediate qualifier (if present) is the name of a group field
containing either the required field or another group field to which the required field belongs.

In the above example, field identifier "SMF030_EXCP.zEXP.zBSZ.zBSZLarge" uniquely identifies a field name "zBSZLarge"
defined in group field "zBSZ" which is itself defined in group field "zEXP" within the record mapping structure
"SMF030_EXCP". (See publication "FileKit SMF Utilities" for details of the FileKit SMF record mapping structures and their
filed name definitions.)

The statement containing "3" indicates that 3 blanks are to be included between the zJOBNAME and zSIT columns.
":Duration" references a vatiable named "Duration" whose value is re-assigned before each detail line is written via
execution of the COMPUTE section REXX statements. The literal '|' will insert a vertical line between each zJESJOB and
zDDN value in the detail line. The header above the vertical line is suppressed.

REPORT Definition COLUMNS

2024/09/02 11:04:59 FileKit REPORT Utility 139

Multiple Column Lines:

COLUMNS:
 'Artist:'; ARTIST 30; 'Album: '; ALBUM 30
 <NEWLINE>
 'Track Info:'
 <NEWLINE>
 1; 'Track#:'; TRACK-NUM 3; 0; '/'; 0; DISC-NUMBER 1
 3; 'Title:' ; NAME 30; 3; ' Duration:'; :Elapsed 11 RIGHT
 <NEWLINE>
 58; 'Released:'; 2; RELEASE-DATE 10

The above example uses the semi-colon (";") default statement separator symbol to include more than one statement on a
single line of the report definition input.

The 3 <NEWLINE> tags mean that 4 lines of column data will be generated for each output record.

The input records are mapped by a single record mapping structure (record-type) and so specification of the record-type
name in the field identifier is unnecessary. Also, since the defined field names are unique within the record-type structure,
the field identifiers need only have one qualifier. This is simply the name of each required input record field ("ARTIST",
"ALBUM", "TRACK-NUM", "DISC-NUMBER", "NAME", "RELEASE-DATE").

Integer width values follow the field identifiers to restrict the width of the output columns. A statement containing only an
integer (gap) value defines the number of blanks to be inserted between the column before and after the specified value in
the output report line.

Syntax:

 (1) +------------------------------------+
 v |
 >>-- COLUMNS: ----------+--- | Column Definition | ----------+--------------><

(1) Column definitions must be specified on separate control statements.

Column Definition:

 |---+-+- fieldname -------+--+--------------+--+---------------+-----------+-|
 | | | | | | | |
 | +- 'literal' -------+ +--| header |--+ +--| options |--+ |
 | |
 +---- gap ---+
 | |
 +---- <NEWLINE> ---+

fieldname:

 |--+-- record-type.input-field -----+---------------------------------------|
 | |
 +-- input-field -----------------+
 | |
 +-- :compute-field --------------+
 | |
 +-- built-in-field --------------+

header:

 |--+------- ' -| header-string |- ' -------------------------+--------------|
 | |
 | +- Left ---+ |
 | | | |
 +-- (-- ' -| header-string |- ' ----+----------+----) --+
 | |
 +- Right --+
 | |
 +- Centre -+
 +- Center -+

REPORT Definition COLUMNS

2024/09/02 11:04:59 FileKit REPORT Utility 140

header-string:

 +----------- | -----------+
 v |
 |------------------+----- header-text -----+------------------------------|

options:

 |--+---------+--+----------+--+--------------+--+----------------+---------->
 | | | | | | | |
 +- width -+ +- Left ---+ +- CHARacter --+ +- NORESETPage --+
 | | | | | |
 +- Right --+ +- NUMeric ----+ +- NORESETBreak -+
 | | | | | |
 +- Centre -+ +- TIME -------+ +- NORESET ------+
 +- Center -+

 >--+---------+--+--------------------------------+--+-----------+----------->
 | | | | | |
 +- STRIP -+ +- SUBSTR(start -+--------+-) -+ +- NBTOTal -+
 | |
 +- ,len -+

 >--+-----------+--|
 | |
 +- BIEQual -+

Parameters:

fieldname
A fieldname is the name of an input record field, computed field or built-in program field used to identify a column
of data in the output detail line and from which column values are obtained.

Field values may change after processing the current input record or record segment. Therefore, a column
identified by fieldname may contain a different value in each report output detail line.

A fieldname must be one of the following field types:

input-field
This fieldname format identifies a field whose values are extracted from within the input records.

Use of input-field without a preceding record-type specification applies only when only one record-type
structure exists for mapping the input record or input is a DB2 table. In these cases input-field should be
used.

See description of input record fields for details on input-field specification.

record-type.input-field
Like input-field alone, this fieldname format identifies a field within the input records.

Where the FileKit SDO structure associated with the input records contains more than one record-type
definition, then the record-type name must be included before the input-field specification to identify the
record-type mapping to which the field belongs. The record-type and input-field name specifications must
be separated by a dot/period (".") character.

Note that when reporting on SMF records, the REPORT utility will dynamically generate an SDO structure
to map the required SMF record types. This structure will always contain more than one record-type and
so a record-type name is mandatory on an SMF input record field specification. Furthermore, the
record-type names specified in the COLUMNS and REQUIRED sections of an SMF report definition input,
are used by the REPORT utility to identify which SMF record-type mappings are required to build the
dynamic SDO structure. See publication "FileKit SMF Utilities" for SMF record-type and field names.

Use of record-type is unnecessary where the SDO structure contains only one record-type definition.

:compute-field
This fieldname format identifies a field whose value is computed using REXX statements specified in the
COMPUTE section.

To distinguish it from an input-field, a compute-field must be specified with a colon (":") symbol prefix. This
prefix character is used only to identify the field name as a compute-field and is not part of the
compute-field name itself. e.g. A column name referenced by a computed field name "MyValue" is
identified using ":MyValue" in the column definition control statement.

See description of computed fields for details on compute-field specification.

REPORT Definition COLUMNS

2024/09/02 11:04:59 FileKit REPORT Utility 141

built-in-field
This fieldname format identifies a REPORT utility built-in field.

All built-in-field names begin with a hash ("#") character and are documented in Appendix A. Built-in
fields.

See description of built-in fields for details on built-in-field specification.

Where fieldname is used in other REPORT definition sections to reference a column definition, then the fieldname
format must exactly match that specified in the COLUMNS section. e.g. The fieldname specifications in the
following refere to the same input record field but do not match exactly and so an error is returned.

 COLUMNS:
 SMF014_INPUT_or_RDBACK_Dataset.JFCB.Ind2.DISP

 SORT:
 SMF014_INPUT_or_RDBACK_Dataset.DISP

Statements in the following REPORT definition sections contain a fieldname reference that must exactly match
either a fieldname specified as a COLUMNS section column definition or a REQUIRED section fieldname
specification.

BLANKWHENZERO Field contains numeric values which are replaced with a blank (x'40') character if the
value is zero (0).

BREAK Field will trigger a report break if there is a change in its value.
SORT Field values are used to sort the report output detail lines.
STATISTICS Field contains values for which statistical values are generated. (COLUMNS section

only.)

gap
Applicable only to printed report output and ignored for CSV, JSON and XML output, gap specifies the number of
blank characters to be inserted between report columns.

A gap value occupies a single control statement in the COLUMNS section. It may also be specified before the first
column and/or after the last column to force padding at the beginning and/or end of the column header and data
lines.

The default is 1.

header
Definition of the column header text which is used as follows:

For a printed report, the column header text will be printed on each new page of the report after the page
headers and above the column values.

◊

For CSV output, the column header is included in the first output record with a variable number that
corresponds to its column values occurring in subsequent CSV records.

◊

For XML the column header text is used as the tag name. A start and end tag is generated and used to
enclose each of the column's values. Any invalid character symbols in the tag name is translated to an
underscore ("_") character.

◊

For JSON the column header text is used as the JSON field name occuring before the colon (":") in a
name/value pair.

◊

If no header is specified then a default header is used. If the column is defined as an input-field, the default header
is the last or only qualifier of the field identifier (i.e. the field name) is used. Otherwise the default column header
will be the field name specified as compute-field, built-in-field or literal.

The header is specified as a character literal header-string which must be enclosed in either quotation marks ('"') or
apostrophes("'"). Header text alignment may be specified by enclosing both the header-string and the alignment
specification within parentheses "()".

If specified in parentheses, a null header value ("") will suppress column heading text. For printed report output,
this means that no header is produced for the column and so the column header underline is also suppressed. A
null header will create a null entry in the header record of CSV output and would result in a null name tag for XML
and JSON output. Beware that a null tag name is not valid for XML and JSON.

A null header value which is not specified in parentheses will be ignored and the default column header used.

For printed report output, a header-string specification may span more than one report line. To do this, the quoted
header-string may be split into a number of header-text elements each separated by the column header break
symbol which, by default, is the vertical bar symbol ("|"). Each header-text element will appear on the next line of
the report and has the effect of reducing the width of the column header. If header-string is not split into
header-text elements, the column header width is the length of the header-string text. Otherwise the column
header width is the length of the longest header-text element.

In the following example, the quoted header-string is split into 3 header-text elements.

REPORT Definition COLUMNS

2024/09/02 11:04:59 FileKit REPORT Utility 142

 #RECNUM ('Input|Record|Number')

This will display in a printed report as follows:

 Input
 Record
 Number

The column header break symbol is set by option COLHEADBRK and is assigned to vertical bar ("|") by default.
This symbol may be included within the quoted header-string text to break the header-string into a number of
header-text elements. Each header-text element will be aligned above the column values and printed on a new line
of the report.

Exceptions to this rule occur when:

The header-string has a length of 1 character and that character is the column header break symbol. In
this case, the column header break symbol is treated as being the only header-text element.

1.

A column header break symbol is immediately preceded (escaped) by another column header break
symbol. In this case, the pair are treated as a single occurrence of the symbol and treated as text within a
header-text element. e.g. If the column header break symbol is default ("|"), a header-string of "YES||NO"
has a single header-text element which is printed on a single line as "YES|NO".

2.

Output is to CSV records, in which case any occurrence of a column header break symbol is translated to
a blank character.

3.

Output is to JSON or XML records, in which case any occurrence of a column header break symbol is
translated to an underscore ("_") character.

4.

'literal'
A literal is a character string constant value that will be repeated in every detail line. The character text must be
enclosed in either quotation marks (") or apostrophes(').

In the following, the vertical bar symbol ("|") will be repeated on every report line so having the effect of producing a
vertical line between the column before and after.

 COLUMNS:
 SMF110#01_Performance_Class.zSTART ('Start' CENTRE)
 '|' ('|')
 SMF110#01_Performance_Class.zSTOP ('Stop' CENTRE)

width
Specifies the column data width. Column values will be truncated or blank padded to this width accordingly.

The default width is the maximum number of characters that would be required to display the widest value
represented by the column field definition. For example, if input-field represents an unsigned, 2-byte integer field in
the input data, the default width is 5 because the highest value represented by input-field is 65535.

For column definitions identified by a literal string or a built-in-field representing a character string of fixed length,
the default width is the length of the character string. For a compute-field, the default width is either 9, or a value
greater than 9 and equal to the largest width value specified for the same compute-field anywhere within the report
definition. For a built-in-field representing a numeric value, a default width of 9 is used.

For CSV, JSON and XML output, width will determine the output width of the value. For a printed report, the output
column width will be the larger of the column header width and width value.

BIEQUAL
Specifies that a blank column detail line value is to be displayed when the value for the column entry matches that
for the same column in the previous report detail line. This option is applicable only to PRINT report output.

Synonyms are BLANKIFEQual, BLANKWHENEQual and BWEQual.

CENTRE|CENTER|LEFT|RIGHT
Specifies the data alignment of the field, literal or header-string value. The value text may be left adjusted, right
adjusted or centralised within the defined data width (width).

An alignment may be specified for printed report column header text (header) as well as the column data values.
For column data definitions of NUMERIC data type, the default column data value text alignment is RIGHT. For all
other types of column definition and also for column headers, the default text alignment is LEFT.

Aligned values, padded or truncated to the data width (width), will be written to the column display area of printed
report or, alternatively, to the CSV, JSON and XML record output.

If specified for column headers, the header must be enclosed in parentheses "()" and include the required
alignment keyword within. The header-string (or all its individual header-text elements) will be aligned within an
area equal to the column header width.

CHARACTER|NUMERIC|TIME
Specifies the data type of the values assigned to fieldname.

REPORT Definition COLUMNS

2024/09/02 11:04:59 FileKit REPORT Utility 143

For an input-field, the data type is automatically determined based on the field mapping information provided by the
record-type structure. However, you may wish to override this. For example, if an input-field has a source data type
of CHARACTER but contains numeric values, you may wish to set data type "NUMERIC" so that the field is
included as one of those eligible for statistics (totals, averages, etc.) generation.

However, for a compute-field, there is no defined data type on which the REPORT utility can base a default
assignment. Therefore, it assigns a data type based on the data type of the field's value at the time the first report
detail line is written. This is determined as follows:

If the value is in a time format then the fieldname is "TIME".
The REPORT utility identifies a time format as n:n:n.n, n:n:n, n:n or n:n.n where n represents 1 or
more decimal digits).

1.

If the value is a REXX numeric value then the fieldname is "NUMERIC".2.
Otherwise the fieldname is "CHARACTER".3.

This method is a best effort and may not return the desired result. Therefore, it is recommended that a specific
data type is provided for a compute-field definition.

The data type of a built-in-field is assigned internally by the REPORT utility and should not require a data type
specification.

NBTOTAL
Specifies that a count of the number of non-blank values will be maintained for each control break level. If no
BREAK section exists, then the count exists for the default (#GRAND) control break only.

The NBTOTAL value for any report break, will occupy the statistics value position below the column data used to
display the accumulated total value for columns of numeric or time data type. Therefore, the NBTOTAL value is
displayed only if the control break definition includes a TOTAL control break print line, which it does by default
unless NOTOTAL is specified.

NBTOTAL may be specified on an input-field or compute-field COLUMN definition of any data type. However, if the
field is of numeric or time data type, the NBTOTAL value will replace the accumulated total values for that column.
For non-character type fields, all values are non-blank unless identified as a column field in section
BLANKWHENZERO. In this case, the field's zero values are translated to blanks and so would not be included in
the count of non-blank values.

Specification of NBTOTAL will include the field column in the list of fields for which statistics values are displayed
by default on each control break. However, if a STATISTICS section exists, then statistics values (including the
NBTOTAL value) will only be displayed for column fields referenced in the STATISTICS section.

<NEWLINE>
Applicable only to printed report output and ignored for CSV, JSON and XML output, <NEWLINE> may be
specified at the start of a COLUMNS statement or on a statement of its own to trigger a break in the column detail
line. Any column values that follow the <NEWLINE> specification will be written to the start of a new print output
line.

If <NEWLINE> is used, the resulting multiple column detail lines written for the same output record means that the
print of column headers is suppressed by default. OPTION COLHEAD(YES) may be used to force output of
column headers for columns in the first column detail line only.

NORESET
Applicable only to input-field column defintions, NORESET will exclude the field from value reset processing.

Value reset processing occurs following output of a report detail line at which point the REPORT utility sets a null
value to each input-field specified in the COLUMN or REQUIRED sections if either of the following is true:

No REPEAT: section has been specified.◊
Both REPEAT: and RESET: sections have been specified, and output has been triggered by input of a
record (or record-segment) with a record-type mapping that matches one specified in the RESET: section.

◊

If NORESET is specified on an input-field definition in the COLUMN or REQUIRED section, then this field's values
are never reset.

NORESETBREAK
NORESETBREAK is applicable only to input-field column defintions and is effective only if control breaks exist
(i.e.a BREAK: section has been specified).

NORESETBREAK will allow the field's value to be reset to null by value reset processing (see NOREST
description). However, the field's value will be re-instated if the next output detail line is the first in a break control
group. Therefore, the last input record value assigned to the column field will be displayed in place of blank
characters in the first report detail line of a control group.

NORESETPAGE
NORESETPAGE is applicable only to input-field column defintions.

NORESETPAGE will allow the field's value to be reset to null by value reset processing (see NOREST
description). However, the field's value will be re-instated if the next output detail line is the first on a new page.
Therefore, the last input record value assigned to the column field will be displayed in place of blank characters in
the first report detail line of a new page.

REPORT Definition COLUMNS

2024/09/02 11:04:59 FileKit REPORT Utility 144

STRIP
Specifies that leading and trailing blanks that potentially exist in the field value, are to be stripped prior to being
aligned in the column display.

Note that, if an alignment (LEFT, RIGHT, CENTRE or CENTER) is specified on an input-field column definition and
that alignment does not match the default alignment for the input-field data type, then STRIP is automatically
implied.

For example, values in character fields may be padded with blanks to a fixed length but an alignment of RIGHT
may required so that the lsat non-blank character appears in the last position of the column display area. Since
character fields are LEFT aligned by default, then specification of RIGHT will also imply STRIP.

SUBSTR(start[,len])
Used when the required output field values are a sub-string of the input values. SUBSTR specifies start, the
position within the input value of the first output field character, and optionally len, the number of characters in the
output field.

If len is not specified, then the substring value will begin at the start character position and end at the last character
in the input value. If len extends beyond the last character of the input value, then the output value will be padded
with blanks. The substring value will ultimately be aligned according to the specified or default data alignement to a
length specified by width.

If both SUBSTR and STRIP are used, then the SUBSTR operation will occur first so that leading and trailing blank
characters will be stripped fron the sub-string value.

REPORT Definition COLUMNS

2024/09/02 11:04:59 FileKit REPORT Utility 145

COMPUTE

Overview:
The COMPUTE section identifies the start of REXX program statements that are executed immediately following input of a
data record but after input field values have been extracted from the new input record (or record segment).

Although other tasks may be performed within the REXX statements, this section is used primarily to update values
assigned to user-defined compute-field variables using standard REXX expressions, operators and functions.

A compute-field variable may be based on the current value of an input record field (input-field). If so, input-field must have
been defined in either the COLUMNS or REQUIRED section.

By default, input-field values are each assigned to a REXX variable that has the same name as the fieldname used to
identify the field within the COLUMNS or REQUIRED sections, but with any record-type (record mapping name) qualifier
removed.

For example, the value assigned to an input-field identified as "SMF014_INPUT_or_RDBACK_Dataset.JFCB.VOLS" in the
COLUMNS section, is assigned to the REXX variable "JFCB.VOLS". If, however, the same input record field is identified as
"SMF014_INPUT_or_RDBACK_Dataset.VOLS", which is valid since field name "VOLS" is unique within the
"SMF014_INPUT_or_RDBACK_Dataset" record mapping structure, then the field values will be assigned to the REXX
variable "VOLS". See also the FIELDNAME option which may be used to force field value assignments to qualified (LONG)
or unqualified (SHORT) REXX variable names.

Exceptions to the default REXX variable naming convention are as follows:

An input field which is an individual element in an array of field entries. Fields of this type are referenced using a
numeric subscript in parentheses immediately following the field name. For example,
"SMF014_INPUT_or_RDBACK_Dataset.SMFEXCP(1)" identifies the first array element of field SMFEXCP.

A REXX compound variable will be set for an array element so that the field name is the stem and the numeric
subscript is the tail. Therefore, for array element "SMFEXCP(1)", the REXX variable "SMFEXCP.1" is set.
Additional parts are added to the tail for each dimension of a multi-dimension array. For example, the
2-dimensional array element "ROOM(2,3)" would set the field value to REXX variable "ROOM.2.3".

1.

An input field which contains the hyphon/minus symbol ("-"). In particular, COBOL supports field names which
contain this symbol. However, REXX does not support "-" within variable names and is instead interpreted as a
minus operator for which REXX will attempt to perform a subtraction function.

To avoid this problem, the REPORT utility instead assigns the field value to a REXX variable name equal to the
field name but with all minus ("-") symbols translated to underscore ("_"). For Example, the value in field name
"TOTAL-TIME" is assigned to REXX variable "TOTAL_TIME".

2.

The value assigned to input-field REXX variable is the last value extracted from the input data prior to calling the COMPUTE
REXX statements. This extracted value is unaffected by any STRIP or SUBSTR parameter specified on the field definition in
the COLUMNS or REQUIRED section. Similarly, the value assigned to any built-in-field, used as a REXX variable name
within the COMPUTE section, will be the prevailing value of the field at the time the REXX statements are called.

If required, input-field and built-in-field values may also be updated within the COMPUTE section REXX statements.

Note that, if a compute-field needs to be assigned an initial value, then this may be done in the BROWSE-EXIT section. For
example, a compute-field variable "XNUM" may be a counter value referenced in a BREAK line and so must be initialised to
zero ("0") before the COMPUTE section containing the REXX statement "XNUM=XNUM+1" is executed.

The REPORT utility supports a number of built-in REXX functions that may be used in the COMPUTE section. See
Appendix B. Built-in functions for descriptions of these.

Example:

REQUIRED:
 SMF030_Common_Address_Space_Work.zTME

COMPUTE:
 Duration = ''
 if zSIT<>'' then
 do; if zTME<>''
 then Duration = Secs2Time(Time2Secs(zTME) - Time2Secs(zSIT))

 zSIT = translate(zSIT , "-:," , "/:.") /* Date and Time chars. */
 end

COLUMNS:
 SMF030_Identification.zJOBNAME
 SMF030_Identification.zSIT
 :Duration

REPORT Definition COMPUTE

2024/09/02 11:04:59 FileKit REPORT Utility 146

The above example calculates the time elapsed between a start and end timestamp and assigns the value to the REXX
variable "Duration". It then updates the "zSIT" input record timestamp value so that it displays in the format "yyyy-mm-dd
HH.MM.SS,tt".

This variable name is identified as :Duration (a compute-field) in the COLUMNS section. Each column detail line will contain
a job name ("zJobName"), followed by the job execution start time ("zSIT"), followed by the job execution time (":Duration").

Note that the input record field containing the end time (zTME) is not included in the column detail line and so must be
referenced in the REQUIRED section in order that its value is retrieved from the input records.

The Duration value is dependent upon non-null values for both zTME and zSIT otherwise a null Duration value will be
returned. "Secs2Time" and "Time2Secs" are REPORT utility built-in functions to convert a number of seconds to an elapsed
time and a timestamp to number of seconds respectively.

Syntax:

 >>-- COMPUTE: ------------------ REXX Control Statements --------------------><

Synonyms:

COMPUTE COMP

Parameters:

REXX Control Statements
Any number of valid REXX logical control statements may be specified to constitute an executable REXX routine.
A REXX error will occur if invalid statements are entered.

The REXX routine ends at the start of the next REPORT section or at the end of the REPORT definition input,
whichever is encoutered first.

REPORT Definition COMPUTE

2024/09/02 11:04:59 FileKit REPORT Utility 147

DISPLAY-EXIT

Overview:
The DISPLAY-EXIT section is applicable only to foreground execution of the the REPORT utility.

On completion of REPORT utility execution in FileKit foregroud, the output report is displayed automatically. If an OUTDD
was specified on the REPORT input then, the report is displayed in a Data Editor browse view, otherwise the report is
displayed in a Text Editor edit view.

The DISPLAY-EXIT section identifies the start of REXX program statements that are executed once only following display of
the output report.

The exit may be used to issue command to the Text or Data Editor as appropriate.

Example:

Example 1 - Apply Colour Highlighting to Displayed Report:

The example demonstrates use of the DISPLAY-EXIT section to highlight report lines based on their content, and to
highlight individual keyword strings in the text.

 DISPLAY-EXIT:
 if address() = "CBLEDIT" /* If this is a Text Editor EDIT view. */
 then
 do; "lcolour /==/ yellow" /* Highlight lines containing "==" in yellow. */
 "scolour /Minimum/ red" /* Highlight string "Minimum" in red. */
 "scolour /Maximum/ blue" /* Highlight string "Maximum" in blue. */
 "scolour /Average/ green" /* Highlight string "Average" in green. */
 end
 /* Otherwise, this is a Data Editor BROWSE view. */
 else "rcolour unmapped yellow when (record << '==')"
 /* Highlight lines containing "==" in yellow. */

A test on the name of the prevailing REXX environment is performed to determine whether the Text Editor (REXX
environment "CBLEDIT") or the Data Editor (REXX environment "CBLSDATA") is being used to display the report output.

For the Text Editor, commands LCOLOUR and SCOLOUR are supported to perform line colouring and string colouring
respectively. For the Data Editor, line (row) colouring can be performed using command RCOLOUR.

Syntax:

 >>-- DISPLAY-EXIT: ------------- REXX Control Statements --------------------><

Synonyms:

DISPLAY-EXIT DISPLAYEXIT

Parameters:

REXX Control Statements
Any number of valid REXX logical control statements may be specified to constitute an executable REXX routine.
A REXX error will occur if invalid statements are entered.

If the REXX environment is "CBLEDIT" then Text Editor commands may be executed. Otherwise, if the REXX
environment is "CBLSDATA" then Data Editor primary commands may be executed as part of the logic.

The REXX routine ends at the start of the next REPORT section or at the end of the REPORT definition input,
whichever is encoutered first.

REPORT Definition DISPLAY-EXIT

2024/09/02 11:04:59 FileKit REPORT Utility 148

FILTER

Overview:
The FILTER section specifies an SDE filter clause used to include (or exclude) processing of input records containing data
that matches particular criteria.

For SMF record input, a filter clause may be used in place of REPORT utility parameters that filter input records based on
subsystem Id (SID), User Id (USERID) and Job Name (JOBNAME). Any specification of these parameters will be overidden
and ignored if the REPORT definition contains a FILTER section filter clause.

For all types of input records, a filter clause will override any record filtering specified by find string(s) in the REPORT utility
parameter FIND.

The FILTER section allows for more flexible record filtering than can be achieved simply using REPORT utility input
parameters. For example, input records may be selected based on the contents of more than one field. Also, a filter clause
may involve more complex conditional logic using balanced parentheses and logical operators AND and OR.

A filter clause may span several REPORT definition control statments and so statement continuation is not necessary.

Examples:

Example 1 - Apply Filter Conditions for Multiple Record Mappings:

In the following example, records are ordered so that a unique customer record (mapped by record-type CUSTOMER) is
followed by zero or more records detailing invoices raised for that customer (mapped by record-type INVOICE).

The FILTER section is used to select only invoices raised in the finacial year 2016/17 (i.e. between 1st April 2016 and 31st
March 2017) for specific customers.

FILTER:
 INCLUDE CUSTOMER
 WHERE (CUSTNO IN (6281,7532))

 INCLUDE INVOICE
 WHERE (CUSTREF IN (6281,7532)) & ISSUE_DATE BT ('2016/04/01','2017/03/31'))

Example 2 - Filter SMF Records:

The following example uses the FILTER section to select SMF records of Type 14 only when the DDNAME does not begin
with "SYS" and the DSN begins with either "CBL", "JGE" or "NBJ" or when the SMF Type 14 record is for a dataset with
SMS Management class "CBLHSM".

SMF records are split into sections (segments) where each segment is mapped by a discrete FileKit SMF record-type
structure. The first segment of an SMF record is mapped by a base (primary) record-type structure with all remaining record
segments being mapped by secondary record-type structures.

Field references are comprised of one or more qualifiers, each separated by a dot/period ("."). The first qualifier is the name
of the primary or secondary segment record-type mapping structure and the last qualifier is the name of the required field
within the record-type structure. Each intermediate qualifier (if present) is the name of a group field containing either the
field itself or another group field to which the required field belongs.

Any field referenced within the filter clause expression which occurs in the primary record-type mapping, may simply be
referenced by its field name. Otherwise, if the field is mapped by a secondary record-type, the field reference must include
the secondary segment record-type name qualifier.

The fields SMFTIOE5 and DSN belong to the primary segment record-type structure
("SMF014_INPUT_or_RDBACK_Dataset") and so do not require specification of the record-type 1st level qualifier.
However, zMCN belongs to the secondary segment record-type structure ("SMF014#2_SMS_Class") and so must be
referenced with the record-type 1st level qualifier.

 FILTER:
 (SMFTIOE5 \>> 'SYS'
 and
 (DSN >> 'CBL.CBLI'
 or DSN >> 'JGE'
 or DSN >> 'NBJ'
)
)
 or
 (SMF014#2_SMS_Class.zMCN = 'CBLHSM')

REPORT Definition FILTER

2024/09/02 11:04:59 FileKit REPORT Utility 149

Example 3 - Apply a DB2 SQL Search Condition:

The following example uses the FILTER section to pass a DB2 SQL WHERE clause search condition to the SQL query
used to create the input DB2 result table.

Input is the SYSIBM.SYSTABLES table and the search condition selects only those rows containing tables belonging to the
CBLI350 database or tables whose name contains "SELCTRN".

 FILTER:
 NAME LIKE '%SELCTRN%' OR DBNAME = 'CBLI350'

Syntax:

 >>-- FILTER: ------------------- filter-clause --------------------------><

filter-clause:

 +---+
 v |
 >>----+---+-- INclude ---- record-type ----+---------------------------+--+---+-----><
 | (1)(2) | | |
 | +-- WHere --| expression |--+ |
 | |
 | |
 | +---+ |
 | v | |
 |---+-- EXclude ---- record-type ----+---------------------------+--+---|
 | (1)(2) | | |
 | +-- WHere --| expression |--+ |
 | |
 | |
 +---------------------------| expression |------------------------------+
 | (3) |
 | |
 +-------------------------- SQL-search-condition -----------------------+
 (4)

expression:

 +------------------- operator ----------------------+
 v |
 |---------+-----+---------------------+-------- term ---------+----|
 | |
 +-- prefix-operator --+

(1) A filter-clause may not contain both INCLUDE and EXCLUDE format sub-clauses.

(2) A filter-clause that uses the INCLUDE or EXCLUDE format to nominate specific record-type mappings is not valid if the report is
generated from DB2 table rows or SMF input records.

(3) A filter-clause containing only an expression will include or exclude records of any record-type mapping that matches the
expression criteria. (Not valid if the report is generated from DB2 table rows.)

(4) A SQL-search-condition specification is valid only for reports generated from DB2 table input.

Parameters:

filter-clause
A filter clause will include or exclude records that are mapped by a particular record type that match an optionally
provided expression.

EXCLUDE record-type
Specifies one instance of an EXCLUDE sub-clause which names the record-type for which associated
input records may be excluded. For DB2 table and SMF record input, use of EXCLUDE record-type in the
filter-clause is invalid and will return error ZZSR036E.

Any number of EXCLUDE sub-clauses may be specified. Although achievable in a single expression, the
same record-type name may be specified on more than one EXCLUDE sub-clause to provide alternative
selection criteria expressions for the same record-type.

Input records will be tested against each EXCLUDE sub-clause in the order specified until either a match
is found or all EXCLUDE sub-clause specifications have been exhausted. Input records that are not
mapped by record-type will fail the individual EXCLUDE sub-clause specification.

REPORT Definition FILTER

2024/09/02 11:04:59 FileKit REPORT Utility 150

If the input record is mapped by record-type, then the record data is tested against the WHERE
expression that follows. If no WHERE expression is specified or the input record data satisfies the criteria
specified by expression, then the record passes the filter criteria and is excluded from REPORT
processing.

If the input record does not satisfy any of the EXCLUDE sub-clause specifications then it fails the filter
criteria and is included in REPORT processing.

INCLUDE record-type
Specifies one instance of an INCLUDE sub-clause which names the record-type for which associated
input records may be included. For DB2 table and SMF record input, use of INCLUDE record-type in the
filter-clause is invalid and will return error ZZSR036E.

Any number of INCLUDE sub-clauses may be specified. Although achievable in a single expression, the
same record-type name may be specified on more than one INCLUDE sub-clause to provide alternative
selection criteria expressions for the same record-type.

Input records will be tested against each INCLUDE sub-clause in the order specified until either a match
is found or all INCLUDE sub-clause specifications have been exhausted. Input records that are not
mapped by record-type will fail the individual INCLUDE sub-clause specification.

If the input record is mapped by record-type, then the record data is tested against the WHERE
expression that follows. If no WHERE expression is specified or the input record data satisfies the criteria
specified by expression, then the record passes the filter criteria and is included in REPORT processing.

If the input record does not satisfy any of the INCLUDE sub-clause specifications then it fails the filter
criteria and is excluded from REPORT processing.

WHERE expression
Applicable only if EXCLUDE record-type or INCLUDE record-type is specified, the WHERE keyword
indicates the start of the record selection expression.

If WHERE expression is not specified, all input records mapped by record-type will satisfy the sub-clause.

expression
An SDE (Data Editor) expression that returns a Boolean value (1="true", 0="false") or a numerical value.
A numerical result is treated as being Boolean in nature so that a value of zero (0) is a "false" condition
and any non-zero value is a "true" condition. If "true", the input record passes the sub-clause criteria.

For example, the following expression will return "1" (a true condition) if the field "FORENAME" (length
16) contains "John".

STRIP(FORENAME) = c'John'

Note that for SMF record input, an expression must be specified without INCLUDE/EXCLUDE WHERE
parameters. For SDE record input, an expression without INCLUDE/EXCLUDE WHERE parameters is
commonly used when all records are mapped by a single record-type.

If specified without INCLUDE/EXCLUDE WHERE parameters, only one expression may be specified
which then applies to all input records regardless of record mapping (record-type).

ZZSD061E is returned if expression contains the name of an input-field not defined in the record-type
used to map the input record. Therefore, if expression is specified without INCLUDE/EXCLUDE WHERE
parameters, input-field would have to exist in all base (or primary segment) record-types used to map
input record data.

ZZSD061E is returned if expression contains the name of an input-field not defined in the record-type
used to map the input record. Therefore, if expression is specified without INCLUDE/EXCLUDE WHERE
parameters, input-field would have to exist in all base (primary) record-types used to map input record
data.

An expression consists of one or more terms (with or without a prefix-operator) and zero or more
operators.

A term may be a literal string, numerical value, input field specification (input-field), function call
or another expression. REPORT utility compute-field or built-in-field definitions are not supported
as terms in a filter clause expression.

⋅

A prefix-operator is optional and applies to the term that follows. It may be a unary plus, unary
minus or a logical NOT.

⋅

An operator acts on the pair of terms between which it is positioned.⋅

An expression and individual terms within an expression are evaluated from left to right. However, the
order in which operators are actioned depends on their defined level of precedence and the presence of
parentheses.

An operator with a higher precedence level will be actioned before operators with a lower precedence
level. This process is repeated until the entire expression is evaluated. e.g. In the following expression,
where operator2 has a higher precedence level than operator1:

REPORT Definition FILTER

2024/09/02 11:04:59 FileKit REPORT Utility 151

 term1 operator1 term2 operator2 term3

The sub-expression term2 operator2 term3 will be evaluated first.

When parentheses are encountered, the entire sub-expression between the parentheses is evaluated
immediately when the term is required. In this way parentheses may be used to force the action of an
operator with a lower precedence level before that with a higher level. e.g. Logical NOT has a higher
precedence level than logical AND, therefore ¬1&0 evaluates to 0, however ¬(1&0) evaluates to 1.

The order of operator precedence is as follows (highest level at the top):

Prefix operators ¬ (Logical NOT) Unary + Unary -

Arithmetic Power **

Arithmetic Multiply and Divide * / % //

Arithmetic Add and Subtract + -

Relational operators = \= > < >= <= <<
 \<< >> \>>

Logical AND &

Logical OR |

See publication "FileKit Data Editor (SDE)" for a detailed description of expressions including operator
descriptions and available functions.

SQL-search-condition
Applicable only to DB2 table input, SQL-search-condition is a standard DB2 SQL search condition. The unaltered
SQL-search-condition string is included on the WHERE clause of an SQL query generated by FileKit to create the
input result table.

See IBM publication "DB2 for z/OS SQL Reference" for details on SQL-search-condition syntax and the SQL
Query WHERE clause.

Only DB2 table rows that satisfy the search condition will be passed as input to the REPORT utility.

REPORT Definition FILTER

2024/09/02 11:04:59 FileKit REPORT Utility 152

FOOT

Overview:
The FOOT section applies only to PRINT type output and specifies the contents of one or more lines to be output at the
bottom of each page. The FOOT section is ignored for non-PRINT report output.

By default, no footing lines are produced for printed reports and so column detail records and break output records may
occupy the last lines of the printed page. If footing lines are defined, a number of lines equal to the number of footing lines
plus 1 is reserved at the bottom of each page. (1 blank line is always printed before the first footing line.)

A footing line definition may be split into 1, 2 or 3 partitions using the slash ("/" character). Each partition is represented by a
print-expression comprised of one or more text fragment definitions and optional gap values. Each fragment of text may be
a character string literal or a value obtained from a field in the input record, a computed field (REXX variable name) or a
built-in report field.

Depending on the number of partitions, each partition is either left adjusted, centralised or right adjusted within the width of
the page. Note that, before a printed report is generated, the page width is set so that it is the maximum length of all the
report page heading, page footing, break and column detail lines. Therefore, the text in adjusted footing partitions will not
overlap and the REPORT processing ensures that at least 2 blanks separate each partition.

Each footing line definition occupies a single statement of the REPORT FOOT section. Use of the statement continuation
character, backslash ("\"), may be necessary in order to stream a single footing line definition over more than one REPORT
definition input record.

A new footing line definition is started for each new statement in the FOOT section. Footing line definitions end at the start
of the next REPORT section or at the end of the REPORT definition input, whichever is encoutered first.

Examples:

Example 1 - Single Footing Line:

FOOT:
 #TIMESTMP \
 / "=== End of Report (Size:" #SEQUENCE (RIGHT,5) 0 ") ===" \
 / "Tel:" PhoneNum

The above example will output 1 footing line and a preceding blank line on each page of a printed report.

The footing definition statement contains 3 partitions. The statement continuation character is used to specify the second
and third partition print definitions on separate REPORT definition records.

The first partition contains 1 text fragment, the built-in field #TIMESTMP, which gets substituted with the current date and
time.

The second partition contains 3 text fragments, a character string literal followed by the built-in-field (#SEQUENCE) and a
second string litral. #SEQUENCE is substituted with the current number of report detail lines, a value which is right adjusted
in an area of 5 characters. Note that a gap of zero (0) overrides the default of 1 blank character so that the second string
literal immediately follows the sequence number value.

The third partition contains 2 text fragments, a character string literal followed by an input-field (PhoneNum). This input-field
will be substituted with the value of PhoneNum obtained from the last record reported on the page.

Text belonging to the first partition will be left adjusted, text belonging to the second partition will be centralised and text
belonging to the third partition will be right adjusted within the page width.

Example 2 - Multiple Footing Lines:

FOOT:
 "TCP/IP Connection Report:" zConnectStart
 / "PAGE" #PAGE (8)

The above example will output 2 footing lines and a preceding blank line on each page of a printed report.

The first footing definition contains only 1 partition with 2 text fragments, a string literal followed by an input-field
(zConnectStart). This input-field will be substituted with the value of zConnectStart obtained from the last record reported
on the page. Because the first line contains only one partition, the partition text will be centralised in the page width.

The second footing definition contains 2 partitions. The first has no text fragments and the second 2 text fragments, a string
literal followed by the built-in-field (#PAGE). The (null) text belonging to the first partition will be left adjusted and the text
belonging to the second partition will be right adjusted within the page width.

REPORT Definition FOOT

2024/09/02 11:04:59 FileKit REPORT Utility 153

#PAGE, will be substituted with the current page number and will occupy 8 characters. Because the page number value is
of numeric data type, the value is automatically right adjusted within the 8 characters it occupies, with non-significant
leading zeros replaced with blank characters.

Syntax:

 (1) +------------------------------------+
 v |
 >>-- FOOT: -------------+--- | Footing Line Definition | ----+--------------><

(1) Footing Line definitions must be specified on separate control statements.

Footing Line Definition:

 |--+-------------------------- print-expression ---------------------------+-|
 | (2) |
 | |
 +--------------- print-expression -- / -- print-expression -------------+
 | (1) (3)
 | |
 +- print-expression -- / -- print-expression -- / -- print-expression --+
 (1) (2) (3)

(1) LEFT adjusted text portion.
(2) CENTRE adjusted text portion.
(3) RIGHT adjusted text portion.

Parameters:

print-expression
A print-expression defines a portion of text in the footing line. The format of a print-expression is described under
"Print Expression".

A footing line may be partitioned so that all text belonging to each partition is either left, centre or right aligned
within the derived page width. Up to 3 partitions may be defined where each partition is represented by a
print-expression.

If more than 1 print-expression is specified (to define multiple partitions), then each print-expression must be
separated from the next using a slash ("/") character. Note that a print-expression may be null and so "/" may be
specified as the first and/or last character of the footing line definition.

Alignment of partitions is based on the number of partitions defined.

Partition text will be left aligned if its print-expression is the first of 2 or 3 partition definitions.1.

Partition text will be centre aligned if its print-expression is the second of 3 partition definitions or is the
only print-expression specified.

2.

Partition text will be right aligned if its print-expression is the last of 2 or 3 partition definitions.3.

REPORT Definition FOOT

2024/09/02 11:04:59 FileKit REPORT Utility 154

HEAD

Overview:
The HEAD section applies only to PRINT type output and specifies the contents of one or more lines to be output at the
start of each page. The HEAD section is ignored for non-PRINT report output.

A number of lines equal to the number of heading lines plus 1 is reserved at the top of each page (1 blank line is always
printed after the last heading line.)

By default, if no HEAD section exists, then a single heading line containing the timestamp at which the report was generated
and the page number will be generated. The format of this heading line is:

 #TIMESTMP / 'PAGE' #PAGE (4)

A heading line definition may be split into 1, 2 or 3 partitions using the slash ("/" character). Each partition is represented by
a print-expression comprised of one or more text fragment definitions and optional gap values. Each fragment of text may
be a character string literal or a value obtained from a field in the input record, a computed field (REXX variable name) or a
built-in report field.

Depending on the number of partitions, each partition is either left adjusted, centralised or right adjusted within the width of
the page. Note that, before a printed report is generated, the page width is set so that it is the maximum length of all the
report page heading, page footing, break and column detail lines. Therefore, the text in adjusted heading partitions will not
overlap and the REPORT processing ensures that at least 2 blanks separate each partition.

Each heading line definition occupies a single statement of the REPORT HEAD section. Use of the statement continuation
character, backslash ("\"), may be necessary in order to stream a single heading line definition over more than one
REPORT definition input record.

A new heading line definition is started for each new statement in the HEAD section. Heading line definitions end at the start
of the next REPORT section or at the end of the REPORT definition input, whichever is encoutered first.

Examples:

Example 1 - Single Heading Line:

HEAD:
 "Mike's Music Collection:" #DAYNAME #TODAY

The above example will output 1 heading line followed by a blank line at the top of each page in a printed report.

The heading definition statement contains 1 partition comprised of 3 fragments, a character string literal followed by 2
built-in-field elements (#DAYNAME and #TODAY). #DAYNAME is substituted with the current day name (e.g. Wednesday)
and #TODAY is substituted with the current date in the format "yyyy/mm/dd".

The partition text is centrailsed within the page width.

Example 2 - Multiple Heading Lines:

HEAD:
 #TIMESTMP / "PAGE" #PAGE (6)
 "TCP/IP Connection Durations by Resource Name on:" zTME
 "Resource:" zRNAME 10 "First Connection:" zConnectStart \
 10 "Duration:" :Duration (8)

The above example will output 3 heading lines followed by a blank line at the top of each page in a printed report.

The first heading definition contains 2 partitions. The first partition has 1 text fragment, the built-in-field (#TIMESTMP) and
the second partition has 2 text fragments, a string literal followed by the built-in-field (#PAGE). The text belonging to the first
partition will be left adjusted and the text belonging to the second partition will be right adjusted within the page width.

The second heading definition contains only 1 partition with 2 text fragments, a string literal followed by an input-field
(zTME). This input-field will be substituted with the value of zTME obtained from the first detail record to be reported on the
page. Because the line contains only one partition, the partition text will be centralised within the page width.

The third heading definition statement also contains only 1 partition and the statement continuation character is used to
continue the heading definition statement onto a second REPORT definition record. The partition has 6 text fragments and 2
gap values. The input-field elements (zRNAME and zConnectStart) will be substituted with values obtained from the first
detail record to be reported on the page. The compute-field (Duration) will be substituted with a value of length 8 which has
been calculated based on input field values obtained from the first detail record reported on the page. The gap values (both
10) insert a gap of 10 blanks between the field value before and the next string literal element that follows.

REPORT Definition HEAD

2024/09/02 11:04:59 FileKit REPORT Utility 155

Syntax:

 (1) +------------------------------------+
 v |
 >>-- HEAD: -------------+--- | Heading Line Definition | ----+--------------><

(1) Heading Line definitions must be specified on separate control statements.

Heading Line Definition:

 |--+-------------------------- print-expression ---------------------------+-|
 | (2) |
 | |
 +--------------- print-expression -- / -- print-expression -------------+
 | (1) (3)
 | |
 +- print-expression -- / -- print-expression -- / -- print-expression --+
 (1) (2) (3)

(1) LEFT adjusted text portion.
(2) CENTRE adjusted text portion.
(3) RIGHT adjusted text portion.

Parameters:

print-expression
A print-expression defines a portion of text in the heading line. The format of a print-expression is described under
"Print Expression".

A heading line may be partitioned so that all text belonging to each partition is either left, centre or right aligned
within the derived page width. Up to 3 partitions may be defined where each partition is represented by a
print-expression.

If more than 1 print-expression is specified (to define multiple partitions), then each print-expression must be
separated from the next using a slash ("/") character. Note that a print-expression may be null and so "/" may be
specified as the first and/or last character of the heading line definition.

Alignment of partitions is based on the number of partitions defined.

Partition text will be left aligned if its print-expression is the first of 2 or 3 partition definitions.1.

Partition text will be centre aligned if its print-expression is the second of 3 partition definitions or is the
only print-expression specified.

2.

Partition text will be right aligned if its print-expression is the last of 2 or 3 partition definitions.3.

REPORT Definition HEAD

2024/09/02 11:04:59 FileKit REPORT Utility 156

INIT-EXIT

Overview:
The INIT-EXIT section identifies the start of REXX program statements that are to be executed once only, immediately prior
to input of the first data record or DB2 table row.

The exit allows for initialisation of REXX variable (compute-field) values, for reference in REXX program statments identified
in the COMPUTE: section. Unlike BROWSE-EXIT, presence of INIT-EXIT in the report definition will not trigger use of the
REPORT utility's Data Editor browse processing of input records, and so may not be used as a mechanism to "exclude"
input records from report processing.

Examples:

Example 1 - Computed Field Initialisation:

In the following, the INIT-EXIT section is used to initialise a compute-field variable at the start of input record processing.

The REXX statements in the COMPUTE section are executed following each input record (or record segment). Each new
"zJobName" SMF input field value is added to "JobArray" (a blank delimitted array of job names) if it does not already exist
in the array.

INIT-EXIT:
 JobArray = '' /* Initialise Compute-field variables. */

COMPUTE:
 if wordpos(zJobName,JobArray) = 0 /* First occurrence of this Job Name ? */
 then JobArray = JobArray JobName /* Add it to array of Job Names. */

Syntax:

 >>-- INIT-EXIT: ---------------- REXX Control Statements --------------------><

Synonyms:

INIT-EXIT INITEXIT

Parameters:

REXX Control Statements
Any number of valid REXX logical control statements may be specified to constitute an executable REXX routine.
A REXX error will occur if invalid statements are entered.

The REXX routine ends at the start of the next REPORT section or at the end of the REPORT definition input,
whichever is encoutered first.

REPORT Definition INIT-EXIT

2024/09/02 11:04:59 FileKit REPORT Utility 157

INPUT

Overview:
The INPUT section specifies the source data for the generated report.

The REPORT Utility can generate output from one of a number of input data sources, specifically a data set, library
member, HFS/ZFS file or DB2 result table. The syntax of the input definition depends on the data source, supporting
operands that are specific to DB2, SDE or SMF format input.

The input format (DB2, SDE or SMF) is identified by one of the following:

The REPORT option specified in the report definition.•

The FileKit REPORT Utility panel used to launch the report generation. (REPORT Utility panels are specific to
DB2, SDE or SMF input.)

•

Specification of format indicator operand pairs xxx-INPUT-BEG and xxx-INPUT-END (where xxx is DB2, SDE or
SMF) on the REPORT primary command.

•

Error ZZS062E is returned if the REPORT option is specified with a different input format to that specified by the REPORT
primary command or implied by the Utility panel from which the report is generated.

Operand values set in the INPUT section are merged with those obtained from the REPORT primary command or REPORT
Utility panels. Therefore, input definition operands required for successful operation may be omitted in the INPUT section
provided they are specified by these other sources. For example, when generating a report via the FileKit panels, a DB2
result table definition may be omitted from the report definition INPUT section so long as it is specified in the FileKit DB2
REPORT panel input field(s).

Note that operand values obtained from the REPORT primary command or REPORT Utility panels will override values
specified on the same operand in the report definition INPUT section. Thus, REPORT input source may be temporarily
changed simply be specifying a different input source as parameters on the REPORT command or Utility panels.

An input definition occupies a single statement of the REPORT INPUT section. Use of the statement continuation character,
backslash ("\"), may be necessary in order to stream an input source definition over more than one report definition input
record.

Examples:

Example 1 - SDE Input:

INPUT:
 'CBL.INST.CBL21042.SZZSSAM2(ZZSDF1DR)' \
 USING COBOL 'CBL.INST.CBL21042.SZZSSAM1(ZZSCF1DR)'

The above example will input data records from the ZZSDF1DR member of the CBL supplied sample data library, and map
record fields using the COBOL copybook member ZZSCF1DR provided in the CBL supplied sample job library.

Example 2 - SMF Input:

INPUT: DD=SMFCAT

The above example will input SMF data records from the DD name SMFCAT which may have been allocated to a single
data set, library member or HFS/ZFS file path, or to a concatenation of data sets.

Example 3 - DB2 Input (Table):

INPUT:
 DB2(CBLA) CBL.ZZSFUNC \
 FROM ROW 31 FOR 50 ROWS \
 WHERE(FUNCNAME LIKE 'B%') \
 ORDER BY(FUNCNAME DESC)

The above example will input 50 rows of a DB2 reults table starting at input row number 31. A connection is made to the
"CBLA" DB2 sub-system before the result table is generated using an SQL SELECT Query that includes the specified table
name, WHERE clause and ORDER BY clause.

REPORT Definition INPUT

2024/09/02 11:04:59 FileKit REPORT Utility 158

Example 4 - DB2 Input (SQL):

INPUT:
 DB2(CBLA) \
 SQL(\
 SELECT F.FUNCNAME, P.PARMNO, P.PARMNAME, P.PARMTYPE \
 FROM CBL.ZZSFUNC F \
 INNER JOIN CBL.ZZSPARM P \
 ON F.FUNCNAME=P.FUNCNAME AND F.APILIB=P.APILIB \
 WHERE F.FUNCNAME = 'P2D' \
 ORDER BY P.PARMNO \
)

The above example will input all rows of a DB2 reults table generated using a fully-formed SQL Query statemnt that
involves a join of 2 tables.

Syntax:

 >>-- INPUT: ---------------- | Input Definition | --------------------------><

Input Definition:

 >>---+------ | SDE Input | ----------------+-----------------------------------><
 | |
 +------ | SMF Input | ----------------+
 | |
 +------ | DB2 Input | ----------------+

SDE Input:

 |--+--------------+-+--+--|
 | | | |
 +- report_inp -+ +- USING --+-+-------------+--- sdo_name ----------+-+
 | | | +- STRUCTure -+ |
 +- DD=ddin ----+ | |
 +-+- HLAsm -----+--- copybook_name -----+
 | +- COBOL -----+ |
 | +- PL1 -------+ |
 | +- ADAta -----+ |
 | +---------------+ |
 | v | |
 +--- SYMNAMes (--+- SYM_source --+-) -+

SMF Input:

 |--+--------------+---|
 | |
 +- report_inp -+
 | |
 +- DD=ddin ----+

REPORT Definition INPUT

2024/09/02 11:04:59 FileKit REPORT Utility 159

DB2 Input:

 |--+-----------------+-+---+->
 | | | |
 +- DB2 -+---------+ +------- table --------+---- | SQL Query Opts | --+
 | | | | |
 +- (ssn) -+ +------- view ---------+ |
 | |
 +- SQL (sql_query) --+--------------------------+
 | |
 +- SQL -- sql_file ----+

 >--+-+------------------------------+--+-------------------------------+-+--|
 | | | | | |
 | +-- FROM -+--------+- rownum --+ +-- FOR --- nrecs --+--------+--+ |
 | +- ROW --+ | +- ROWS -+ | |
 | | | |
 | +-- ILIM -- nrecs --------------+ |
 | |
 +---- SCROLL ---+

SQL Query Opts:

 |--+------------------------+--+---+--|
 | | | |
 +- WHERE (where_clause) -+ +- ORDER -+------+--+- (order_by_clause) -+
 | +- BY -+ | |
 | | |
 +- SORT ------------+ |
 | |
 +- SORTIndex -+-- index_name --+----------+
 | |
 +-- Prime -------+

Parameters:

DB2 [(ssn)]
Applicable to DB2 table input only, specification of DB2 is optional and is only necessary if used to identify a
specific DB2 sub-system.

The (ssn) operand is optional and identifies the local DB2 sub-system name to which a connection will be made.
This value may be overridden by an ssn value specified on the REPORT primary command or via the "SSN>" input
field of the FileKit DB2 REPORT Utility panel from which the report is generated.

Before a connection can be made to the DB2 sub-system, the FileKit DB2 plan must have been bound to that
sub-system.

Default for ssn is the DB2 sub-system name set in the FileKit DB2 Primary Options menu and saved in the User
INI file.

FOR nrecs [ROWS]
Applicable to DB2 table input only, FOR nrecs ROWS specifies the maximum number of rows that may be fetched
from the DB2 result table. This value may be overridden by a FOR nrecs value specified on the REPORT primary
command or via the "Max>" input field of the FileKit DB2 REPORT Utility panel from which the report is generated.

Note that, if an input limit (ILIM) value is specified, it will override the nrecs value specified on FOR nrecs ROWS.
However, any nrecs value specified by ILIM or FOR will be ignored if DB2 operand SCROLL is also specified to
use a DB2 table scrollable cursor.

By default, REPORT processing will include all rows of the DB2 result table.

FROM [ROW] rownum
Applicable to DB2 table input only, FROM ROW rownum specifies the number of the input DB2 result table row
from which REPORT processing will start. This value may be overridden by a FROM rownum value specified on
the REPORT primary command or via the "Start>" input field of the FileKit DB2 REPORT Utility panel from which
the report is generated.

Rows that occur before the specified row number will be bypassed and not included in the number of rows (nrecs)
count identified by an input limit (ILIM) or FOR nrecs RECS specification.

Note that any specified rownum value will be ignored if DB2 operand SCROLL is also specified to use a DB2 table
scrollable cursor.

By default, REPORT processing starts from the first row of the result table.

REPORT Definition INPUT

2024/09/02 11:04:59 FileKit REPORT Utility 160

{ ORDER [BY] | SORT } (order_by_clause)
Applicable to DB2 table input only where a DB2 table or view name is specified as input (as opposed to a fully
formed SQL SELECT query).

ORDER BY or SORT specifies a DB2 SQL ORDER BY clause to be included in the prepared SQL SELECT query
statement generated by the REPORT utility and used to obtain the DB2 result table. This clause may be
overridden by a SORTINDEX value or ORDER BY clause specified on the REPORT primary command, or an
ORDER BY clause constructed via the FileKit "Create DB2 SELECT/ORDER BY Clause" sub-panel opened from
the DB2 REPORT Utility panel from which the report is generated.

See IBM publication "DB2 SQL Reference" for syntax of the order_by_clause which will fetch result table rows in
the specified order.

If required, a SORT section may also be specified in the report definition to sort the report output record detail
lines. This may be necessary if report detail lines are to be sorted based on the values of one or more
compute-field.

Operands ORDER BY (or SORT) and SORTINDEX are mutually exclusive. If both are specified, the ORDER BY
clause will be used.

report_inp | DD=ddin
Applicable to SDE and SMF format input, report_inp or DD=ddin identifies the data source from which input
records are obtained for report processing. This data source may be overridden by a report_inp or DD=ddin
specification on the REPORT primary command, or by entering a file object name in the "DSN/Path>" input field of
the FileKit REPORT Utility panel from which the report is generated.

A report_inp value may be quoted or unquoted and is either a sequential dataset name, library dataset and
member name or a HFS/ZFS file path. A ddin value is an allocated DD name which must be prefixed with "DD=".

If DD=ddin is specified, ddin may be allocated to any data source represented by report_inp including a DASD or
TAPE dataset. Alternatively, it may be allocated to a concatenation of data sets, thus allowing records to be
processed from multiple, consecutive input sources. e.g. Multiple generations of the same GDG.

If DD=ddin is specified, ddin may be allocated to any data source represented by report_inp including a DASD or
TAPE dataset. Alternatively, it may be allocated to a concatenation of data sets, thus allowing records to be
processed from multiple, consecutive input sources. e.g. Multiple generations of the same GDG.

Unless included via the REPORT command or FileKit REPORT Utility panel, specification of an input data source
(report_inp or DD=ddin) is mandatory.

SCROLL
Applicable only to DB2 table input, SCROLL indicates that a DB2 scrollable INSENSITIVE cursor is to be used to
fetch DB2 rows.

If SCROLL is used, then once the cursor has been opened, only a relatively small number of rows will be kept in
storage at any time. At open the results table is materialised (i.e. a temporary copy is made) which, for large tables,
may mean that opening the cursor may take a long time and consume much resource.

Use of DB2 scrollable cursors may not be desirable and so is possible only if the DB2 administrator has set
DB2.SCROLL=YES in the FileKit Site INI file.

SCROLL is incompatible with FOR ROWS, input limit (ILIM) and FROM ROWS values specified via the INPUT and
OPTIONS sections, or passed as parameters by the FileKit REPORT panels or REPORT command. If specified,
values provided for these operands will be ignored if SCROLL is also used.

SORTINDEX { index_name | PRIME }
Applicable to DB2 table input only where a DB2 table or view name is specified as input (as opposed to a fully
formed SQL SELECT query).

SORTINDEX specifies index_name, the name of an existing DB2 Index for the table being processed. The index
identifies the key columns/expressions by which the table rows will be ordered for input to the REPORT utility.
Alternatively, PRIME may be specified to indicate that the primary index should be used. This SORTINDEX value
may be overridden by a SORTINDEX value or ORDER BY clause specified on the REPORT primary command, or
an ORDER BY clause constructed via the FileKit "Create DB2 SELECT/ORDER BY Clause" sub-panel opened
from the DB2 REPORT Utility panel from which the report is generated.

If required, a SORT section may also be specified in the report definition to sort the report output record detail
lines. This may be necessary if report detail lines are to be sorted based on the values of one or more
compute-field.

Operands ORDER BY (or SORT) and SORTINDEX are mutually exclusive. If both are specified, the ORDER BY
clause will be used.

table | view | SQL(sql_query) | SQL sql_file
Applicable to DB2 table input only, each of these operands define the source of a DB2 result table from which input
rows are obtained for report processing.

This result table source definition may be overridden by a table, view, SQL(sql_query) or SQL sql_file specification
on the REPORT primary command. Alternatively, it may be overridden by entering a DB2 result table source in the
DB2 Table/View "Name>" input field, Input SQL File "DSN/Path>" input field, or "Statement>" input field of the

REPORT Definition INPUT

2024/09/02 11:04:59 FileKit REPORT Utility 161

particular FileKit DB2 REPORT Utility panel from which the report is generated.

The following operands are mutually exclusive and may be used to specify the DB2 result table source:

table The name of a DB2 table or alias (table) as defined in the SYSIBM.SYSTABLES
catalog table.

view The name of a DB2 view (view) as defined in the SYSIBM.SYSVIEWS catalog table.
SQL(sql_query) Specifies sql_query, a complete DB2 SQL query that generates a result table.

For example, the SQL query may include clauses that select specific columns, join
tables, filter and order the table rows.

SQL sql_file Specifies sql_file, a sequential DSN or library DSN and member name in which a DB2
SQL query is saved.

For example, this may be a library member containing a SQL query used as input to
SPUFI or the FileKit EXECSQL utility.

Both table and view may be specified with either 1, 2 or 3 qualifiers representing name, schema.name or
location.schema.name respectively. Default for location is the local DB2 server and the default for schema is the
value assigned to special register CURRENT SCHEMA (initially set to the user's SQLID). Note that the user's
SQLID is set via the FileKit DB2 Primary Options menu and saved in the User INI file.

If table or view is used, then FileKit will generate an SQL query clause (e.g. "SELECT * FROM table").

If one of the SQL type operands is used and the report definition input includes a FILTER section, then the filter
clause will be ignored and warning message ZZSR064W returned. This is because the FILTER section will attempt
to generate a WHERE clause to add to the SQL Query. However, the SQL Query passed to the REPORT utility is
already fully formed.

The SQL query specified by the SQL operand or generated by FileKit is executed as a prepared DB2 SQL
statement and the result table rows passed to the REPORT utility.

Unless a DB2 result table source definition is to be provided via the REPORT command or FileKit DB2 REPORT
Utility panels, then specification of a DB2 result table source in the INPUT section is mandatory.

USING
For SDE format input only, USING identifies the record formatting structure definition used to map input record
fields. Providing a record formatting structure will override use of record field mappings defined by a MAP section.

This structure definition may be overridden by a structure definition specified via the REPORT primary command,
or by entering a file object name and type in the "Structure/Copybook overlay:" input fields of the FileKit REPORT
Utility panel from which the report is generated.

The structure ultimately used by the REPORT utility to map the input records will be a FileKit structured data object
(SDO). The name of an existing SDO may be passed directly to the REPORT utility or it may be generated
automatically from an alternative source (e.g. a COBOL copybook). The following operands are mutually exclusive
and may be used to specify the structure definition:

[STRUCTURE] sdo_name
Specifies the name of an existing FileKit (SDO) structure file sdo_name, which has been generated via
the FileKit Create Structure panels or CREATE STRUCTURE primary command. The sdo_name may be
quoted or unquoted, and is the name of a sequential data set or a library DSN and member name.

{ HLASM | COBOL | PL1 | ADATA } copybook_name
Specifies the format and name of the input record mapping source file (copybook_name). The
copybook_name may be quoted or unquoted and is a library DSN and member name. The format of the
copy book source may be one of the following:

ADATA The SYSADATA output generated by the assembley of an assembler source using
the HLASM (High Level Assembler) program, or generated by the compilation of a
COBOL or PL1 source using the Enterprise COBOL or Enterprise PL1 compiler
respectively.

COBOL A copybook member containing COBOL data division - data description source.
HLASM An Assembler source member containing DSECT definition(s).
PL1 An %INCLUDE directive source member containing PL1 data declaration

structure(s).

FileKit will interpret the record mapping source to generate a temporary SDO structure.

SYMNAMES(SYM_source ...)
Specifies one or more SYM_source entries, where SYM_source is the name of a sequential data set or
library DSN and member name containing SYMNAMES symbol statements as supported by the SORT
utility.

Symbol statements must include field definitions specified as position, length and format. Please refer to
your SORT utility documentation (e.g. the IBM publication "z/OS DFSORT Application Programming

REPORT Definition INPUT

2024/09/02 11:04:59 FileKit REPORT Utility 162

Guide") for details on the symbol statement.

FileKit will interpret the SYMNAMES field definitions to generate a temporary SDO structure containing a
single record mapping (record-type).

Unless a MAP section exists or a structure definition is included via the REPORT command or FileKit REPORT
Utility panel, then specification of USING and a record formatting structure definition is mandatory.

WHERE(where_clause)
Applicable to DB2 table input only where a DB2 table or view name is specified as input (as opposed to a fully
formed SQL SELECT query).

WHERE specifies a DB2 SQL WHERE clause to be included in the prepared SQL SELECT query statement
generated by the REPORT utility and used to obtain the DB2 result table. This clause may be overridden by a
WHERE clause specified on the REPORT primary command, or a WHERE clause constructed via the FileKit "Row
Selection by Column Value" sub-panel opened from the DB2 REPORT Utility panel from which the report is
generated.

A DB2 where clause may also be provided via the FILTER section of the report definition. If both a FILTER section
and a WHERE specification exists, then the contents of the FILTER section are ignored and warning message
ERR064W is returned.

See IBM publication "DB2 SQL Reference" for syntax of the where_clause which will filter and include only table
rows that match the where clause criteria.

REPORT Definition INPUT

2024/09/02 11:04:59 FileKit REPORT Utility 163

MAP

Overview:
Applicable to SDE input only, the MAP section is used to identify individual fields within the input records when no
structure/copybook has been provided via the INPUT section or REPORT utility parameters.

Having been defined in the MAP section, a field definition name may be used in any other section that support an input-field
reference.

For anything but very simple record field maps that apply to all the input records, it is recommended that an existing
structure is provided via a copybook or a FileKit generated structure object (SDO).

The field mapping may be specified using one of the following four mutually exclusive methods:

SYMNAME Definitions
The syntax of a SYMNAME definition resembles that used for SORT utility SYMNAMES input.

Each SYMNAME definition specifies a field name, a fixed position within the record, a length and a data type
format. Note that a field's start position is a byte number in the record data which, for RECFM=V variable length
input records, does not include the length of the 4-byte RDW. If required, SYMNAME definitions permit
overlapping of fields.

Unlike standard SYMNAME field definitions, use of the equals symbol ("=") to represent a value specified in the
previous field definition, is not permitted in MAP field definitions. Otherwise, MAP field definitions support most of
the commonly used data formats supported by SYMNAME field definitions plus some extra formats not supported
by SYMNAME.

Please refer to your SORT utility documentation (e.g. the IBM publication "z/OS DFSORT Application
Programming Guide") for details on the SYMNAMES symbol statement.

Contiguous Field Definitions
The syntax of a field definition matches that used for record-type field definitions specified by the
CREATE STRUCTURE primary command.

The first field definition defines a field starting at position 1 of the record data (excluding any RDW). Unless
defining a UNION of fields which redifnes fields in the same area of record data, the position of each successive
field follows the last byte of the field defined immediateley before.

Field definitions support more source data type formats than SYMNAME definitions.

Non-contiguous Field Definitions
Syntax identical to that of a contiguous field definition except that an OFFSET value is supplied so that each field
starts at a fixed offset within the record data.

Like SYMNAME definitions, fields may overlap and need not be defined in the order the occur within the record.
However, since field offsets are fixed, this method may not be used if the field location varies (e.g. if it follows a
variable length field or a variable number of array field elements).

If a non-contiguous field definition is used, then all field definitions must include an OFFSET specification.

CREATE STRUCTURE Primary Command
A fully-formed FileKit CREATE STRUCTURE primary command used to generate a FileKit SDO structure.

Defining fields using this method has the advantage that a structure may be created which contains more than one
record mapping for different format input records, and potentially created using multiple copybook/structure
sources. The record mapping used to map a input record is based on values in the record itself (identified via a
USE WHEN clause).

Beware that, unless operand TEMPORARY is specified, the CREATE STRUCTURE operation will attempt to
create a permanent copy of the structure. The SDO structure will be written to a DASD data set, library member or
HFS/ZFS fileid based on the specified structure name. Similarly, once a permanent or temporary structure has
been created, the REPLACE operand must be used to prevent error ZZSD017E. This would occur on subsequent
executions of the report generation that contains the CREATE STRUCTURE command.

Refer to primary command CREATE STRUCTURE in the "FileKit Data Editor" reference manual for syntax and
description of command operands.

All input following the MAP section header is joined to become a single REPORT definition control statement. Therefore, the
specified definitions or CREATE STRUCTURE command may stream over several lines without having to specify a line
continuation symbol ("\") at the end of each line.

If a MAP section exists and the REPORT utility is passed a structure reference (via the INPUT section, REPORT utility
panel or primary command), then the MAP section will be ignored. Specification of a MAP section is invalid for SMF record
or DB2 table input and will return error ZZSR049E.

REPORT Definition MAP

2024/09/02 11:04:59 FileKit REPORT Utility 164

Examples:

Example 1 - SYMNAME Definitions:

In the following example, the MAP section contains SYMNAME definitions used to define 6 fields that map the input record
data. These field names may be referenced in other REPORT sections.
Asterisk ("*") is used in the field definitions to indicate a field position that immediately follows the field define before it (i.e.
field "Region" has start position 71, following field "Company").

MAP:
 RefId,1,4,BI
 Company,11,60,CH
 Region,*,10,CH
 Zip_Code,121,8,CH
 Emp_Total,*,4,BI
 Web_URL,*,80,CZ

Example 2 - Contiguous Field Definitions:

In the following example, the MAP section contains contiguous field definitions used to define fields that map the input
record data. These field names may be referenced in other REPORT sections.

Unnamed filler fields are defined in order to map fields that follow later in the record data. The filler fields map data fields
that are not referenced by this report definition. A "UserName" structure field is included which comprises 2 fields,
"LastName" and "FirstName". Note that, if field name "LastName" was not unique within the MAP structure, then the field
would have to be referenced as "UserName.LastName" throughout the report definition.

MAP:
 RefID int(2) unsigned remark "Unique Reference Number"
 , char(17) remark "Filler"
 ,Host char(12) remark "Host Name"
 , char(6) remark "Filler"
 ,UserName struct(
 LastName char(30)
 ,FirstName char(30)
)
 , char(32) remark "Filler"
 ,IPv4 ip(4) remark "Host IP Address"

Example 3 - Non-Contiguous Field Definitions:

The following is the same as the above example except that field offset values are used. Because the fields need not follow
on from each other, there is no need to specify filler fields. However, the field offsets need to be calculated beforehand.

MAP:
 RefID int(2) unsigned remark "Unique Reference Number" offset(0)
 ,Host char(12) remark "Host Name" offset(18)
 ,UserName struct(
 LastName char(30) offset(36)
 ,FirstName char(30) offset(66)
) offset(36)
 ,IPv4 ip(4) remark "Host IP Address" offset(128)

Example 4 - CREATE STRUCTURE command:

The following example uses the CREATE STRUCTURE command to generate a temporary SDO structure containing 2
record mappings based on 01 level group definitions "ContactType1" and "ContactType2" found in copy book source
members "XMCNTX1" and "XMZC21" respectively. Both members exist in the library "NBJ.COBOL.COPY".

Input records are mapped by fields in record mapping "ContactType2" if the "CT" field within the record data has a value of
"2", otherwise they are mapped by record mapping "ContactType1" by default.

Any field name defined in either of the record mapping structures can be referenced within the report definition.

MAP:
 CREATE STRUCTURE TEMPSTRUCT
 LIBRARY (NBJ.COBOL.COPY)
 RECORD (NAME ContactType1
 SOURCE COBOL XMCNTX1
 DEFAULT
)
 RECORD (NAME ContactType2
 SOURCE COBOL XMZC21
 PRIMARY
 USE WHEN CT='2'
)
 TEMPORARY REPLACE

REPORT Definition MAP

2024/09/02 11:04:59 FileKit REPORT Utility 165

Syntax:

 >>-- MAP: ------------ | Field Definition Statement | --------------------------><

Field Definition Statement:

 |---+------- CREATE_STRUCTURE_Command --------------------------------+-------|
 | |
 | |
 | +---+ |
 | v | |
 +--+--- | SYMName Definition | --------------------------------+----+
 | |
 | |
 | +------------------------- , -------------------------------+ |
 | v | |
 +--+--- | Field Definition | ----------------------------------+----+
 | |
 | |
 | +------------------------- , -------------------------------+ |
 | v | |
 +--+--- | Field Definition | --- OFFSET -- (-+-- int ---+-) -+----+
 | |
 +- X'hex' -+

SYMNAME Definition:

 |-- field_name -- ,--+-- field_pos --+-- , -- field_length -- , --+-- BI --+-----|
 | | +-- CH --+
 +----- * -------+ +-- CV --+
 +-- CZ --+
 +-- FI --+
 +-- FL --+
 +-- FS --+
 +-- HX --+
 +-- PD --+
 +-- VC --+
 +-- ZD --+

Field Definition:

 +-- EBCdic ---+
 | |
 |--+--------------+-- | DataType Definition | ---+-------------+--+-----------+-->
 | | | | | |
 +- field_name -+ +-- ASCii ----+ +-- ZEROs --+

 >--+--+------------------------------>
 | +----------- , ----------+ |
 | v | |
 +- DIMensions(-+-+------- dim --------+-+-) -+
 | |
 +- (min,max,dfield) -+

 >--+---+---+--------------------+--|
 | +----- , ------+ | | |
 | v | | +-- REMarks remark --+
 +- ENUMeration -+--------+- (+- string=val -+) -+
 | |
 +- enam -+

DataType Definition:

 +- (1) --------+
 | |
 |--+- BIT ------------+--------------+---+-|
 | | | |
 | +- (n_bits) ---+ |
 | |
 | +- (1) --------+ |
 | | | |
 +- CHARacter ---+--+--------------+---+
 +- CHARZ -------+ | | |
 +- HEXadecimal -+ +- (n_bytes) --+ |
 | | continued...

REPORT Definition MAP

2024/09/02 11:04:59 FileKit REPORT Utility 166

DataType Definition (Continued):

 | |
 | +- (1) --------+ +- UNALIGNed -+ |
 | | | | | |
 +- CHARVarying -+--+--------------+-------------------------+---------------+
 +- HEXVAR ------+ | | | | |
 | +- (n_bytes) --+ +- ALIGNed ---+ |
 | |
 | +- ,2 ,EXCLUSIVE ---+ |
 | | | |
 +- VARCHAR -----+---- (max_bytes -+-------------------------------+-) -----+
 +- VARHEX ------+ | | |
 | | +- ,Exclusive -+ | |
 | | | | | |
 | +- ,len_bytes -+--------------+-+ |
 | | | |
 | +- ,Inclusive -+ |
 | |
 +- XVARCHAR --------- (max_bytes --- ,len_field) ---------------------------+
 | |
 | |
 | +- (1) --------+ +- UNSIGNed -+ |
 | | | | | |
 +- BINTeger -------+--------------+----------+------------+-----------------+
 | | | | | |
 | +- (n_bits) --+ +- SIGNed ---+ |
 | |
 | +- (4) --------+ +- SIGNed ---+ +- UNALIGNed -+ |
 | | | | | | | |
 +- INTeger --------+--------------+--------+-+------------+-+-------------+-+
 | | | | | | | | |
 | +- (n_bytes) --+ | +- UNSIGNed -+ +- ALIGNed ---+ |
 | | |
 | +- (7 ,0) -+ | |
 | | | | |
 +- FIXed ----------+---------------------+-+ |
 | | | |
 | +- (pr -+-------+-) -+ |
 | +- ,sc -+ |
 | |
 | +- (7 ,0) -+ +- SIGNed ---+ |
 | | | | | |
 +- DECimal --------+---------------------+---+------------+-----------------+
 | | | | | |
 | +- (pr -+-------+-) -+ +- UNSIGNed -+ |
 | +- ,sc -+ |
 | |
 | +- (TRAIL ,INC) -+ |
 | | | |
 | +- SIGNed -+----------------------------+-+ |
 | | | | | | | |
 | | | + ,INC -+ | | |
 | | | | | | | |
 | | +- (+ LEAD --+-+-------+) -+ | |
 | | | | | | | |
 | +- (1 ,0) -+ | + TRAIL -+ + ,SEP -+ | |
 | | | | | |
 +- ZONEd -+-------------------+-+---+-+
 | | | | | |
 | +- (pr +-------+) -+ | | |
 | +- ,sc -+ +- UNSIGNed ------------------------------+ |
 | |
 | |
 | +- (4) ------------+ +- UNALIGNed -+ |
 | | | | | |
 +- FLOATBin ----+--+------------------+---------------------+-------------+-+
 +- FLOAThex ----+ | | | | |
 | +- (8) ------------+ +- ALIGNed ---+ |
 | +- (16) -----------+ |
 | |
 | +- (34)------------+ |
 | | | |
 +- FLOATDec -------+------------------+-------------------------------------+
 | | | |
 | +- (7) ------------+ |
 | +- (16) -----------+ |
 | |
 | |
 | +- (Decimal) ------+ |
 | | | |
 +- DATE -----------+------------------+-------------------------------------+
 | +- (Binary) -------+ |
 | +- (Catalog) ------+ |
 | +- (VTOC) ---------+ |
 | |
 | |
 | |
 | | continued...

REPORT Definition MAP

2024/09/02 11:04:59 FileKit REPORT Utility 167

DataType Definition (Continued):

 | |
 | +- (Decimal) ------+ |
 | | | |
 +- TIME -----------+------------------+-------------------------------------+
 | | | |
 | +- (Binary) -------+ |
 | +- (DECIMAL2) -----+ |
 | +- (DECIMAL3) -----+ |
 | +- (Stck) ---------+ |
 | +- (Stck,n_bits) --+ |
 | +- (Unix) ---------+ |
 | |
 | |
 | +- (Decimal) ------+ |
 | | | |
 +- TIMESTamp ------+------------------+-------------------------------------+
 | | | |
 | +- (Binary) -------+ |
 | +- (DECIMAL2) -----+ |
 | +- (DECIMAL3) -----+ |
 | +- (Hfsdir) -------+ |
 | +- (SMf) ----------+ |
 | +- (Stck) ---------+ |
 | +- (Stck,n_bytes) -+ |
 | +- (TIMEBin) ------+ |
 | +- (TIMEDec) ------+ |
 | +- (TIMEDEC2) -----+ |
 | +- (TIMEDEC3) -----+ |
 | |
 | |
 | +- ('X') -------------------+ |
 | | | |
 +- PCHAR ----------+---------------------------+----------------------------+
 | | | |
 | +- (pl1_picture_string) ----+ |
 | |
 | +- ('S9') ------------------+ |
 | | | |
 +- PFIXED----------+---------------------------+----------------------------+
 | | | |
 | +- (pl1_picture_string) ----+ |
 | |
 | +- ('S9ES99') --------------+ |
 | | | |
 +- PFLOAT ---------+---------------------------+----------------------------+
 | | | |
 | +- (pl1_picture_string) ----+ |
 | |
 | |
 +- IPaddress ------+- (4) ---------------------+----------------------------+
 | | | |
 | +- (16) --------------------+ |
 | |
 | |
 | +---------- , -----------+ +- UNALIGNed -+ |
 | v | | | |
 +- STRUCTure ---+---- (-+- | Field Definition | -+-) -----+-------------+-+
 +- UNION -------+ | |
 +- ALIGNed ---+

Parameters:

field_name
The name of the field to be assigned to the field in the input record data.

The field_name may be referenced as a input-field in any of the other REPORT defintion sections.

For Field Definition syntax, the field_name may be omitted. For example, when defining a filler field that is not
referenced in the REPORT, but is necessary to pad to the next required input field position.

field_pos | *
For SYMNAME Definition syntax, field_pos or "*" specifies the position number of the field within the input record
data.

If asterisk ("*") is used, then the position will be the position of the character following the previous field definition. If
no previous field definition exists, then position 1 is used.

If required, field_pos may be a position within an already defined field.

field_length
For SYMNAME Definition syntax, field_length specifies the length of the field within the input record data.

REPORT Definition MAP

2024/09/02 11:04:59 FileKit REPORT Utility 168

BI | CH | CV | CZ | FI | FL | FS | HX | PD | VC | ZD
For SYMNAME Definition syntax, this operand specifies the format (data type) of the field data as follows:

Format Description
BI Binary Integer (unsigned)
CH Character of length field_length
CV Character Varying with 2-byte length prefix so that the field has a fixed length of

field_length+2
CZ Zero (x'00') delimitted Character of maximum length field_length
FI Fixed-Point Integer (signed)
FL Hexadecimal Floating-Point (signed)
FS Signed numeric with optional leading floating sign
HX Character of length field_length displayed as hexadeimal
PD Packed Decimal (signed)
VC Variable Character with 2-byte length prefix so that the field has a variable length up

to a maximum of field_length+2.
ZD Zoned Decimal (signed)

CREATE_STRUCTURE_Command
A fully-formed FileKit CREATE STRUCTURE primary command to be used to create a FileKit SDO structure
comprising one or more record mappings structures.

Refer to primary command CREATE STRUCTURE in the "FileKit Data Editor" reference manual for syntax and
description of command operands.

DataType Definition
For Field Definition syntax, the datatype definition specifies both the length and format of data in the field. The data
type will determine how the data will be interpreted by the REPORT utility.

As detailed below, a wider range of data types is supported for Field Definition syntax than for SYMNAME
Definition syntax.

BINTEGER (n_bits) [SIGNED | UNSIGNED]
A signed or unsigned binary integer value occupying a number of bits (n_bits). The binary value is
converted to decimal for display and reporting.

A BINTEGER field is always bit aligned so that it begins at the bit immediately following the field defined
before it. If a BINTEGER field is defined as SIGNED and n_bits is greater than 1, then negative values
are represented as the two's complement of the equivalent positive value. The binary data is big-endian
so that the sign is determined by the first (leftmost) bit value (0=positive, 1=negative). If n_bits is 1, then
the field will always be treated as UNSIGNED.

By default the field is UNSIGNED and the default value for n_bits is 1.

BIT (n_bits)
A bit value is interpreted and displayed as a binary string of "1" and "0" values occupying a number of bits
(n_bits). The default value for n_bits is 1.

A BINTEGER field is always bit aligned so that it begins at the bit immediately following the field defined
before it.

CHARACTER (n_bytes)
A fixed-length character string occupying a number of bytes (n_bytes). The default value for n_bytes is 1.

A CHARACTER field is always byte aligned so that it begins at the byte immediately following the field
defined before it.

CHARVARYING (n_bytes)
A variable-length character string of maximum length (n_bytes). The character string is padded with
blanks to occupy the fixed number of bytes (n_bytes). The default value for n_bytes is 1.

A CHARVARYING field is equivalent to a PL/1 field which is declared as being CHARACTER VARYING.
An INTEGER field occupies the first 2 bytes and the character data the remaining n_bytes, thus the
overall length of a CHARVARYING field is n_bytes+2. The actual length of the variable length character
string within the fixed length area is held in the 2-byte INTEGER field prefix.

A CHARVARYING field may be UNALIGNED so that it begins at the byte immediately following the field
defined before it, or ALIGNED. If ALIGNED is specified, the field will be aligned on a halfword boundary.
The area of record between the last byte of the previous field and the first byte of the aligned
CHARVARYING field contains unreferenced slack bytes. Default is UNALIGNED.

REPORT Definition MAP

2024/09/02 11:04:59 FileKit REPORT Utility 169

CHARZ (n_bytes)
A variable-length character string of maximum length (n_bytes). The character string is terminated with a
null character (x'00') and padded with blanks to occupy a fixed number of bytes (n_bytes+1), thus the
overall length of a CHARZ field is n_bytes+1. The default value for n_bytes is 1.

A CHARZ field is equivalent to a PL/1 field which is declared as being CHARACTER VARYINGZ.

A CHAZ field is always byte aligned so that it begins at the byte immediately following the field defined
before it.

DATE (BINARY | CATALOG | DECIMAL | VTOC)
A date field with the source data in one of the following formats:

BINARY

A BINARY date field has a 6-byte length and is in the format
X'yyyy,mmmm,dddd'.

The yyyy, mmmm and dddd are each 2-byte INTEGER field values representing
year number, month of year number and day of month number respectively.

For example, a DATE(BINARY) field containing X'07DB,000A,0014'
corresponds to 20th October 2011.

CATALOG

A CATALOG date field corresponds to the format of date fields commonly used
in z/OS ICF Catalog data sets. This date field has a 4-byte length and is in the
format X'yydd,dFcc'.

The yy is a 1-byte DECIMAL field with no sign indicator containing a year of
century number, dddF is a 2-byte DECIMAL field representing day of year
number and cc is the century indicator, a 1-byte INTEGER field with a value of
either "0" or "1". A century indicator value of "0" corresponds to "19" and a value
of 1 corresponds to "20".

For example, a DATE(CATALOG) field containing X'0819,7F01' corresponds
to 16th July 2008.

DECIMAL

A DECIMAL date field has a 4-byte length and is in the format X'ccyy,dddF'.

The yy is a 1-byte DECIMAL field with no sign indicator containing a year of
century number, dddF is a 2-byte positive DECIMAL field representing day of
year number and cc is the century indicator, a 1-byte INTEGER field with a value
of either "0" or "1". A century indicator value of "0" corresponds to "19" and a
value of 1 corresponds to "20".

For example, a DATE(DECIMAL) field containing X'0111,045F' corresponds
to 14th February 2011.

VTOC

A VTOC date field corresponds to the format of date fields commonly used in a
DASD Volume Table of Contents (VTOC). This date field has a 3-byte length and
is in the format X'yydddd'.

The yy is a 1-byte INTEGER field representing the number of years since 1900
and dddd is a 2-byte INTEGER field representing the day of year number.

For example, a DATE(VTOC) field containing X'6900E7' corresponds to 19th
August 2005.

The default date format is DECIMAL.

DECIMAL (pr[,sc]) [SIGNED | UNSIGNED]
A signed or unsigned packed decimal value occupying a number of bytes based on the precision (pr)
value. The number of bytes is equal to the integer part of the result obtained from (pr+2)/2.

The precision (pr) value is the total number of decimal digits represented by the field which can range
from 1 to 31. The scale (sc) value is the number of fractional digits (digits following the decimal point)
which can range from 0 to the precision value.

A DECIMAL field is always byte aligned so that it begins at the byte immediately following the field defined
before it.

The last 4 bits of the (low order) byte represents the sign of the value. X'A', X'C', X'E' and X'F' indicate a
positive number, X'B' and X'D' indicate a negative number. FileKit (and the REPORT utility) will correctly
interpret any of these sign representations and display the value correctly. However, when using the
FileKit Data Editor to input a value to a DECIMAL field defined with SIGNED, X'C' and X'D' will be used
for positive and negative values respectively. Otherwise, if the DECIMAL field is defined with UNSIGNED,
FileKit will use X'F' and so all values will be positive.

By default the field is SIGNED, the default value for precision (pr) is 7 and the default scale (sc) is 0.

REPORT Definition MAP

2024/09/02 11:04:59 FileKit REPORT Utility 170

FIXED (pr[,sc]) [SIGNED | UNSIGNED]
A signed or unsigned binary value representing a decimal fixed point (rational) numeric value. The field
occupies a number of bytes based on the precision (pr) value as follows:

Precision (pr) #Bytes
1 to 4 2 (halfword)
5 to 9 4 (fullword)
10 to 19 8 (doubleword

The precision (pr) value is the total number of decimal digits represented by the field which can range
from 1 to 19. The scale (sc) value is the number of fractional digits (digits following the decimal point)
which can range from 0 to the precision value.

The binary value is converted to decimal before the scaling factor is applied. For example, if a field
defined as FIXED(3,2) contains the value X'0200', then FileKit will convert the value to decimal ('512')
before applying the scaling factor, resulting in decimal value '5.12'.

A FIXED field may be UNALIGNED, so that it begins at the byte immediately following the field defined
before it, or ALIGNED. If ALIGNED, then the field will begin at the next halfword, fullword or doubleword
boundary within the record data for FIXED fields of length 2, 4 and 8 respectively. The area of record
between the last byte of the previous field and the first byte of the aligned FIXED field contains
unreferenced slack bytes.

If a FIXED field is defined as SIGNED, then negative values are represented as the two's complement of
the equivalent positive value. The binary data is big-endian so that the sign is determined by the first
(leftmost) bit value (0=positive, 1=negative).

By default the field is SIGNED and UNALIGNED, the default value for precision (pr) is 7 and the default
scale (sc) is 0.

FLOATBIN (4|8|16)
A signed binary (IEEE 754) floating-point format value representing a decimal (rational) numeric value.
The binary floating-point field occupies 4 (short), 8 (long) or 16 (extended) bytes.

A FLOATBIN field may be UNALIGNED, so that it begins at the byte immediately following the field
defined before it, or ALIGNED. If ALIGNED, then the field will begin at the next fullword, doubleword or
quadword boundary within the record data for FLOATBIN fields of length 4, 8 and 16 respectively. The
area of record between the last byte of the previous field and the first byte of the aligned FLOATBIN field
are unreferenced slack bytes.

By default the field is UNALIGNED, the default value field length is 4.

FLOATDEC (7|16|34)
A signed decimal floating-point format value representing a decimal (rational) numeric value. The decimal
floating-point field occupies a number of bytes based on the specified number of significant digits
represented by the field value. A significant digit value of 7 implies 4 bytes (short), 16 implies 8 bytes
(long), and 34 implies 16 bytes (extended).

A FLOATDEC field is always byte aligned so that it begins at the byte immediately following the field
defined before it.

By default field length is 34.

FLOATHEX (4|8|16)
A signed hexadecimal floating-point format value representing a decimal (rational) numeric value. The
hexadecimal floating-point field occupies 4 (short), 8 (long) or 16 (extended) bytes.

A FLOATHEX field may be UNALIGNED, so that it begins at the byte immediately following the field
defined before it, or ALIGNED. If ALIGNED, then the field will begin at the next fullword, doubleword or
quadword boundary within the record data for FLOATHEX fields of length 4, 8 and 16 respectively. The
area of record between the last byte of the previous field and the first byte of the aligned FLOATHEX field
are unreferenced slack bytes.

By default the field is UNALIGNED, the default value field length is 4.

HEXADECIMAL (n_bytes)
A fixed-length string occupying a number of bytes (n_bytes) and displayed in hexdecimal format. The
default value for n_bytes is 1.

Hexadecimal format displays each byte of the field as 2 hexadecimal digit characters (0-F) so that the
displayed data length is twice the field length.

A HEXADECIMAL field is always byte aligned so that it begins at the byte immediately following the field
defined before it.

REPORT Definition MAP

2024/09/02 11:04:59 FileKit REPORT Utility 171

HEXVAR (n_bytes)
A variable-length string of maximum length (n_bytes) which is displayed in hexdecimal format. The string
is padded with blanks to occupy the fixed number of bytes (n_bytes). The default value for n_bytes is 1.

HEXVAR and CHARVARYING field types are analogous, and differ only in the how the data is displayed.
Hexadecimal format displays each byte of the string as 2 hexadecimal digit characters (0-F) so that the
displayed data length is twice the field length.

An INTEGER field occupies the first 2 bytes of the HEXVAR field and the string data the remaining
n_bytes, thus the overall length of a HEXVAR field is n_bytes+2. The actual length of the variable length
string within the fixed length area is held in the 2-byte INTEGER field prefix.

A HEXVAR field may be UNALIGNED so that it begins at the byte immediately following the field defined
before it, or ALIGNED. If ALIGNED is specified, the field will be aligned on a halfword boundary. The area
of record between the last byte of the previous field and the first byte of the aligned HEXVAR field
contains unreferenced slack bytes. Default is UNALIGNED.

INTEGER (n_bytes) [SIGNED | UNSIGNED]
A signed or unsigned binary value representing a decimal whole number (integer) numeric value. The
field occupies a number of bytes (n_bytes).

By default, an INTEGER field is UNALIGNED, so that it begins at the byte immediately following the field
defined before it. For INTEGER type with n_bytes length 2, 4 or 8, the field may be ALIGNED so that it
begins at the next halfword, fullword or doubleword boundary respectively. The area of record data
between the last byte of the previous field and the first byte of the aligned INTEGER field contains
unreferenced slack bytes.

If an INTEGER field is defined as SIGNED, then negative values are represented as the two's
complement of the equivalent positive value. The binary data is big-endian so that the sign is determined
by the first (leftmost) bit value (0=positive, 1=negative).

By default the field is SIGNED and UNALIGNED, and the default value for n_bytes is 4.

IPaddress (4|16)
A field interpreted as an IP address occupying either 4 or 16 bytes.

IPADDRESS(4)
An IPv4 address comprising 4, 1-byte unsigned INTEGER fields. The value will
display as 4, 3-digit decimal values each separated by a "." (dot/period) with an
overall length of 15 bytes. For example, 192.168.001.064

IPADDRESS(16)

This format will detect whether the 16-byte source represents an IPv4 or IPv6
address.

If the first 10 bytes of the source are X'00' and the next 2 bytes are X'FF', then
the field is determined to be an IPv4 address. The junior 4 bytes of the source
value will be processed as for IPADDRESS(4) and the displayed value will be left
justified within a 39-byte display area.

Otherwise, the source is determined to be an IPv6 address. The value will
display as 8, 4-digit hexadecimal values each separated by a ":" (colon) with
overall length of 39 bytes. For example,
0123:4567:89AB:CDEF:0123:4567:89AB:CDEF

PCHAR (pl1_picture_string)
A character field represented by a PL/1 style PICTURE string (pl1_picture_string) occupying a number of
bytes equal to the length of the PICTURE string.

The pl1_picture_string must be enclosed in quotation marks (") or apostrophes ('), and may contain only
picture string characters "X", "A" and "9" and repetition factors "(n)". See publication "Enterprise PL1 for
z/OS Language Reference" for details on picture characters for character data.

The default PCHAR character data picture string is 'X'.

PFIXED (pl1_picture_string)
A numeric character field represented by a PL/1 style PICTURE string (pl1_picture_string) that describes
a decimal fixed-point numeric value. The field occupies a number of bytes equal to the maximum length of
the numeric character data item that can be represented by the PICTURE string characters.

The pl1_picture_string must be enclosed in quotation marks (") or apostrophes ('), and may contain only
valid numeric character picture string characters applicable to fixed-point values (for example: "9", "V",
"Z", "+", "-", "S", "B", ".", "CR") and repetition factors "(n)". The pl1_picture_string must not contain
characters "A", "X", "E" or "K". See publication "Enterprise PL1 for z/OS Language Reference" for details
on picture characters for character numeric data.

The default PFIXED numeric character data picture string is 'S9'.

REPORT Definition MAP

2024/09/02 11:04:59 FileKit REPORT Utility 172

PFLOAT (pl1_picture_string)
A numeric character field represented by a PL/1 style PICTURE string (pl1_picture_string) that describes
a decimal floating-point numeric value. The field occupies a number of bytes equal to the maximum length
of the numeric character data item that can be represented by the PICTURE string characters.

The pl1_picture_string must be enclosed in quotation marks (") or apostrophes ('), and may contain only
valid numeric character picture string characters applicable to floating-point values (for example: "9", "V",
"Z", "+", "-", "S", "B", ".", "CR", "E", "K") and repetition factors "(n)". The pl1_picture_string must not
contain characters "A" or "X". See publication "Enterprise PL1 for z/OS Language Reference" for details
on picture characters for character numeric data.

The default PFLOAT numeric character data picture string is 'S9ES99'.

STRUCTURE (Field Definition [, ...])
A STRUCTURE field is a group of one or more fields, each specified using a Field Definition syntax and
separated from the next field definition using a comma (","). One or more of these fields may itself be a
STRUCTURE field, thus allowing definition of multiple levels of nested group fields.

The STRUCTURE field occupies a number of bytes equal to the total length of the fields defined in the
structure plus any slack bytes inserted due to alignment.

A STRUCTURE field may be UNALIGNED, so that it begins at the byte immediately following the field
defined before it, or ALIGNED. If ALIGNED is specified then all fields within the structure will also be
aligned according to their data type. The STRUCTURE field itself will be aligned according to the data
type of the first field in the structure. For example, if the first field of the structure is FLOATHEX(16) then
the structure will start at the next quadword boundary position, if the first field is INTEGER(4) then the
structure will start at the next fullword boundary position, and if it is CHARACTER then it will start at the
next byte position. The area of record between the last byte of the previous field and the first byte of the
aligned STRUCTURE field will contain unreferenced slack bytes. Default is UNALIGNED

TIME (BINARY | DECIMAL | DECIMAL2 | DECIMAL3 | STCK | UNIX)
A time of day field with the source data in one of the following formats:

BINARY

A BINARY time field has a 4-byte length and is in the format X'nnnn,nnnn'.
The field contains a 32-bit unsigned binary value representing the number of one
hundredths of a second (0.01) that have elapsed since midnight.

For example, a TIME(BINARY) field containing X'004A,D2A3' (decimal
'4903587') corresponds to time of day '13:37:15.87'.

DECIMAL

A DECIMAL time field has a 4-byte length and is in the format as returned by the
TIME macro with option DEC, X'HHMM,SShh'.

The HH, MM, SS and hh are each a 1-byte DECIMAL field with no sign indicator.
The values represent hour of day, minute of hour, second of minute and
hundredths of second respectively.

For example, a TIME(DECIMAL) field containing X'1337,1587' corresponds to
time of day '13:37:15.87'.

DECIMAL2

A DECIMAL2 time field has a 4-byte length and is in the format X'00HH,MMSS'.

The HH, MM and SS are each a 1-byte DECIMAL field with no sign indicator.
The values represent hour of day, minute of hour and second of minute
respectively.

For example, a TIME(DECIMAL2) field containing X'0013,3715' corresponds
to time of day '13:37:15'.

DECIMAL3

A DECIMAL3 time field has a 4-byte length and is in the format X'0HHM,MSSC'.

The field is a positively signed, 4-byte DECIMAL field where the leftmost (high
order) 4-bits of the packed decimal value are 0. The pairs of 2 packed decimal
digits that follow are: HH (hour of day), MM (minute of hour) and SS (second of
minute) values.

For example, a TIME(DECIMAL3) field containing X'0133,715C' corresponds
to time of day '13:37:15'.

STCK
A STCK time field has an 8-byte length and is a 64-bit unsigned binary elapsed
time value in the system TOD clock format. See publication "z/Architecture
Principles of Operation" for details on system TOD clock format.

REPORT Definition MAP

2024/09/02 11:04:59 FileKit REPORT Utility 173

STCK,n_bits

A STCK time field with an n_bits value has a 4-byte length. It represents an
unsigned binary elapsed time value obtained from the rightmost (low order)
32-bits of the system TOD clock value which has been shifted right a number of
bits specified by n_bits. This STCK format is often found in SMF record for fields
representing elapsed time values.

The following shows the number of microsecond (us) time units represented by
one bit in the 32-bit TOD clock value which has been shifted a n_bits number of
bits to the right as specified by TIME(STCK,n_bits).

TIME(STCK,12) 1us
TIME(STCK,16) 16us
TIME(STCK,19) 128us
TIME(STCK,22) 1024us
TIME(STCK,32) 1048576us

UNIX

A UNIX time field is a 4-byte unsigned INTEGER value representing the number
of seconds elapsed since midnight.

For example, a TIME(UNIX) field containing X'0000,BF8B' (decimal '49035')
corresponds to time of day '13:37:15'.

The default time format is DECIMAL.

TIMESTAMP (BINARY | DECIMAL | DECIMAL2 | DECIMAL3 | HFSDIR | SMF | STCK | ...
 ... TIMEBIN | TIMEDEC | TIMEDEC2 | TIMEDEC3)

A date and time field with the source data in one of the following formats:

BINARY
A BINARY timestamp field is equivalent to a DATE(BINARY) field followed by a
TIME(BINARY) field but referenced as a single timestamp value. It has a 10-byte
length and is in the format X'yyyy,mmmm,dddd,nnnn,nnnn'.

DECIMAL
TIMEDEC

A DECIMAL timestamp field is equivalent to a DATE(DECIMAL) field followed by
a TIME(DECIMAL) field but referenced as a single timestamp value. It has an
8-byte length and is in the format X'ccyy,dddF,HHMM,SShh'.

DECIMAL2
TIMEDEC2

A DECIMAL2 (synonym TIMEDEC2) timestamp field is equivalent to a
DATE(DECIMAL) field followed by a TIME(DECIMAL2) field but referenced as a
single timestamp value. It has an 8-byte length and is in the format
X'ccyy,dddF,00HH,MMSS'.

DECIMAL3
TIMEDEC3

A DECIMAL3 (synonym TIMEDEC3) timestamp field is equivalent to a
DATE(DECIMAL) field followed by a TIME(DECIMAL3) field but referenced as a
single timestamp value. It has an 8-byte length and is in the format
X'ccyy,dddF,0HHM,MSSC'.

HFSDIR
An HFSDIR timestamp field has a 4-byte length and is in a format used by the
system for HFS directory timestamps. This is a 32-bit unsigned binary value
containing a number of seconds elapsed since 1970/01/01 00:00:00.

SMF
A SMF timestamp field is equivalent to a TIME(BINARY) field followed by a
DATE(DECIMAL) field but referenced as a single timestamp value. It has an
8-byte length and is in the format X'nnnn,nnnn,ccyy,dddF'.

STCK A STCK timestamp field has a length 8-bytes and is an unsigned 64-bit binary
system TOD clock value.

STCK,n-bytes

A STCK timestamp field occupies a number of bytes (n_bytes) and has a value
equivalent to the leftmost (high order) n_bytes of a system TOD clock value.
STCK,4 is commonly used as the timestamp format in a number of SMF records
fields.

TIMEBIN
A TIMEBIN timestamp field is equivalent to a DATE(DECIMAL) field followed by
a TIME(BINARY) field but referenced as a single timestamp value. It has an
8-byte length and is in the format X'ccyy,dddF,nnnn,nnnn'.

The default timestamp format is DECIMAL.

REPORT Definition MAP

2024/09/02 11:04:59 FileKit REPORT Utility 174

UNION (Field Definition [, ...])
A UNION field is used to define one or more fields at the same area of the record data. Each field in the
union starts at the same record position as the start of the UNION field and redefines the interpretation of
the data at that position.

A field within the union is defined using Field Definition syntax, entered between the parentheses that
follow UNION and is separated from the next field definition using a comma (","). Each comma separated
field definition identifies a field union of fields.

The UNION field occupies a number of bytes equal to the length of the longest field defined in the union.

A UNION field may be UNALIGNED, so that it begins at the byte immediately following the field defined
before it, or ALIGNED. If ALIGNED is specified then the UNION field and all fields within the union will be
aligned according to the data type of the first field in the union. For example, if the first field defined in the
union is FLOATHEX(8) then all fields in the union will start at the same doubleword boundary position, if it
is INTEGER(2) then all fields will start at the same halfword boundary position, and if it is CHARACTER
then all fields will start at the next byte position. The area of record between the last byte of the previous
field and the first byte of the aligned UNION field will contain unreferenced slack bytes.

A field within the union may have a data type of STRUCTURE in which case a group of fields may be
defined to occupy the same area as the other field(s) in the union. Default is UNALIGNED

VARCHAR (max_bytes[,len_bytes[,EXCLUSIVE | INCLUSIVE]])
A variable-length character string occupying a variable number of bytes up to a maximum of max_bytes or
max_bytes+len_bytes, as defined by INCLUSIVE and EXCLUSIVE respectively.

A VARCHAR field comprises an INTEGER field of length len_bytes (default 2-bytes) followed by a
variable number of character bytes. The value in the INTEGER field specifies the number of bytes of
character data. The max_bytes length value includes the INTEGER length field if INCLUSIVE is specified,
in which case the maximum length of the character data is max_bytes-len_bytes. If EXCLUSIVE is
specified, the max_bytes length does not include the INTEGER length field.

A VARCHAR field is always byte aligned so that it begins at the byte immediately following the field
defined before it. The start positions of fields that follow a VARCHAR field may vary for each record
mapped by the record mapping structure.

By default, the max_bytes value does not include the INTEGER length field (EXCLUSIVE) which itself has
a default (len_bytes) length of 2.

VARHEX (max_bytes[,len_bytes[,EXCLUSIVE | INCLUSIVE]])
A variable-length string occupying a variable number of bytes up to a maximum of max_bytes or
max_bytes+len_bytes, as defined by INCLUSIVE and EXCLUSIVE respectively. The string is displayed in
hexdecimal format.

VARHEX and VARCHAR field types are analogous, and differ only in the how the data is displayed.
Hexadecimal format displays each byte of the string as 2 hexadecimal digit characters (0-F) so that the
displayed data length is twice the string length.

A VARHEX field comprises an INTEGER field of length len_bytes (default 2-bytes) followed by a variable
number of data bytes. The value in the INTEGER field specifies the number of bytes of data. The
max_bytes length value includes the INTEGER length field if INCLUSIVE is specified, in which case the
maximum length of the data is max_bytes-len_bytes. If EXCLUSIVE is specified, the max_bytes length
does not include the INTEGER length field.

A VARHEX field is always byte aligned so that it begins at the byte immediately following the field defined
before it. The start positions of fields that follow a VARHEX field may vary for each record mapped by the
record mapping structure.

By default, the max_bytes value does not include the INTEGER length field (EXCLUSIVE) which itself has
a default (len_bytes) length of 2.

XVARCHAR (max_bytes,len_field)
A variable-length character string occupying a variable number of bytes up to a maximum of max_bytes.

An XVARCHAR field comprises variable number of character bytes of length specified by another field
mapped within the same record (len_field). This length field must be of numeric data type and contain a
whole-number value which is less than the max_bytes.

An XVARCHAR field is always byte aligned so that it begins at the byte immediately following the field
defined before it. The start positions of fields that follow an XVARCHAR field may vary for each record
mapped by the record mapping structure.

REPORT Definition MAP

2024/09/02 11:04:59 FileKit REPORT Utility 175

ZONED (pr[,sc]) [SIGNED [(TRAILING | LEADING [, INCLUDED | SEPARATE])] | UNSIGNED]
A signed or unsigned binary zoned-decimal character value representing a decimal fixed point (rational)
numeric value. The field occupies a number of bytes equal to the precision (pr) or precision plus 1 (pr+1)
if a separate sign byte (SEPARATE) is used.

The precision (pr) value is the total number of zoned-decimal digits represented by the field. The scale
(sc) value is the number of fractional digits (digits following the decimal point) which can range from 0 to
the precision value.

A ZONED field is always byte aligned so that it begins at the byte immediately following the field defined
before it.

If a ZONED field is defined as UNSIGNED, then the field value is always positive and each character is a
decimal digit where the 4-byte zone portion of each byte is X'F'. For example, a ZONED(4) UNSIGNED
field with value 123 is X'F0F1F2F3'. If the field is defined as SIGNED then the field has a format based on
the combination of the TRAILING/LEADING and INCLUDED/SEPARATE attributes. See table below.

LEADING
INCLUDED

The sign is included in the ZONED value so that the 4-byte zone portion of the
first character is X'C' if the value is positive or X'D' if the value is negative. For
example, a ZONED(4) SIGNED(LEAD,INC) with value 416 is X'C0F4F1F6' and
-794 is X'D0F7F9F4'.

TRAILING
INCLUDED

The sign is included in the ZONED value so that the 4-byte zone portion of the
last character is X'C' if the value is positive or X'D' if the value is negative. For
example, a ZONED(4) SIGNED(TRAIL,INC) with value 416 is X'F0F4F1C6' and
-794 is X'F0F7F9D4'.

LEADING
SEPARATE

The sign occupies a separate byte in the ZONED field increasing the length of
the field by 1 (i.e. pr+1). The sign character ("+" for a positive value and "-" for a
negative value) is positioned before the character digits. For example, a
ZONED(4) SIGNED(LEAD,SEP) with value 416 is X'4EF0F4F1C6' (+0416) and
-794 is X'60F0F7F9F4' (-0794).

TRAILING
SEPARATE

The sign occupies a separate byte in the ZONED field increasing the length of
the field by 1 (i.e. pr+1). The sign character ("+" for a positive value and "-" for a
negative value) is positioned after the character digits. For example, a
ZONED(4) SIGNED(TRAIL,SEP) with value 416 is X'F0F4F1C64E' (0416+) and
-794 is X'F0F7F9F460' (0794-).

By default, a ZONED field has attributes SIGNED(TRAILING,INCLUDED). The default value for precision
(pr) is 1 and the default scale (sc) is 0.

DIMENSIONS ({dim | (min,max,dfield)} [, ...])
For Field Definition syntax, DIMENSIONS indicates that the field is a template for an array of fields.

The array may comprise a fixed number of field elements specified by the integer value dim, or may have a
variable number of field elements as specified by the whole number value contained in the field dfield which is
defined at another location within the record data. If there are a variable number of array elements, then a min and
max integer value must be specified to define a fixed minimum and maximum number of array elements.

Each field element in the array has the same filed name and definition, and are individually identified via a
sequence number in a parenthesised subscript. For example, for a field name "Result" defined with
DIMENSIONS(4), then the array elements would each be referenced as Result(1), Result(2), Result(3)
and Result(4).

A single specification of dim or dfield defines a single array dimension. However, if necessary, an array may be
multi-dimensional so that each array field element is itself an array of field elements. A number of array dimension
definitions may be specified with each definition separated from the next by a comma (","). The subscript values,
used to identify an individual element of a multi-dimensional array, is also multi-dimensional so that a comma
separated sequence number exists for each dimension. For example, if field name "Result" was defined with
DIMENSIONS(2,2), then the array elements would each be referenced as Result(1,1), Result(1,2),
Result(2,1) and Result(2,2).

A mixture of fixed and variable length arrays may be used for multi-dimensional arrays. For example, field
"BoxDim" defined with DIMENSIONS((0,10,NBoxes),3) defines a 2-dimensional array. The first array
dimension is variable and has a number of elements equal to the whole number value in the "NBoxes" (number of
boxes) field. Each of these BoxDim array field elements is an array of 3 field elements (denoting the length, width
and height of each box). If "NBoxes" has a value 2, then the array field elements would be BoxDim(1,1),
BoxDim(1,2), BoxDim(1,3), BoxDim(2,1), BoxDim(2,2) and BoxDim(2,3).

Note that the start positions of fields that follow a field involving a variable number of array elements may vary for
each record mapped by the record mapping structure.

REPORT Definition MAP

2024/09/02 11:04:59 FileKit REPORT Utility 176

EBCDIC | ASCII
For Field Definition syntax, EBCDIC and ASCII apply only to fields defined with one of the character data types
(CHARACTER, CHARZ, CHARVARYING, VARCHAR or XVARCHAR) and specifies the encoding of the character
data.

Default encoding is EBCDIC.

ENUMERATION [enam] (string=val [, ...])
For Field Definition syntax, ENUMERATION applies only to fields defined with one of the integer data types
(BINTEGER or INTEGER) and is used to create an enumeration definition for the field.

An enumeration definition is a list of comma separated integer value (val) to character name (string) equivalencies.
The definition may be assigned a name (enam) which is necessary if it is be used by another field definition. If the
field requires the same named enumeration definition as that defined on another field, then ENUMERATION may
be specified without a list of specifications and simply reference the other enumeration by name (enam).

Integer values that match an enumerator value will display as the equivalent enumeration string. Similarly, a value
entered in the field using the Data Editor must be one of the enumerated strings. However, any reference to the
field's value (for example in an expression or a search string) may use the enumerated string or its equivalent
integer value.

For example, a field defined as BINTEGER(1) with ENUMERATION SWITCH ("Off"=0,"On"=1) will display
values "On" or "Off" instead of "1" and "0". Furthermore, another integer type field may be assigned the same
enumeration simply by specifying ENUMERATION SWITCH.

Note that string must be enclosed in quotation marks (") or apostrophes (') if it contains comma (",") or blank
characters. A string may also be specified without an equivalent val, in which case val will default to be 1 plus the
value in the previous equivalency in the list.

OFFSET (int | X'hex')
For Non-Contiguous Field Definitions only, OFFSET specifies the absolute offset of the field from the start of the
record data, expressed as a decimal (int) or hexadecimal (X'hex') value.

Field definitions that use OFFSET may occur in any order. If OFFSET is specified, then it must also be used on all
other field definitions.

REMARKS remark
For Field Definition syntax, REMARK specifies a comment string (remark) to be associated with the field.

The comment string must be enclosed in quotation marks (") or apostrophes (').

Note that REPORT will use a field's remark text as the default column header if the field is identified as a report
column input-field in the COLUMNS section.

ZEROS
For Field Definition syntax, ZEROS applies only to fields defined with one of the numeric data types (BINTEGER,
DECIMAL, FIXED, INTEGER or ZONED) and is used to include non-significant leading zeros in the displayed
value.

By default, all non-significant leading zeros are replaced with blank characters.

REPORT Definition MAP

2024/09/02 11:04:59 FileKit REPORT Utility 177

OPTIONS

Overview:
The OPTIONS section specifies options that affect the REPORT utility execution and determine the format of the report
output.

Multiple option values may be specified on the same control statement and/or multiple control statements under the
OPTIONS section header.

Example:
In the following example, the OPTIONS section is used to restrict printed report output. A maximum of 5 detail records will
be written for each break control group, underlining before statistics values will be suppressed and output of statistics
column totals will be also be suppressed.

OPTIONS:
 DETAIL(5) NOBRKULINE
 NOTOTALS

Syntax:

 +-----------------+
 v |
 >>-- OPTIONS: --------------+--- option ------+------------------------------><

option (1/2):

 (1) +-- YES --+
 | |
 >>---+-- ASA -----------------------+- (-+---------+-) -------------------+--><
 +-- BIEQual -------------------+ | | |
 +-- BIZ -----------------------+ +-- NO ---+ |
 +-- BRKSORT -------------------+ |
 +-- BRKTOTALS -----------------+ |
 +-- BRKULINE ------------------+ |
 +-- COLHEAD -------------------+ |
 +-- CSVLITERALS ---------------+ |
 +-- CSVQUOTED -----------------+ |
 +-- CSVSTRIPALL ---------------+ |
 +-- DB2NULL -------------------+ |
 +-- GRANDTOTAL ----------------+ |
 +-- HEAD ----------------------+ |
 +-- JSONARRAY -----------------+ |
 +-- JSONINDENT ----------------+ |
 +-- JSONLITERALS --------------+ |
 +-- JSONQUOTED ----------------+ |
 +-- JSONSTRIPALL --------------+ |
 +-- LINESTRIP -----------------+ |
 +-- NEWPAGE -------------------+ |
 +-- REXXCOMPOUND --------------+ |
 +-- SELECTJOIN ----------------+ |
 +-- SHORTHEADERS --------------+ |
 +-- SHORTSTATS ----------------+ |
 +-- SMFONLINE -----------------+ |
 +-- SPLITBREAK ----------------+ |
 +-- STATS ---------------------+ |
 +-- SUMMARY -------------------+ |
 +-- TOTALS --------------------+ |
 +-- XMLINDENT -----------------+ |
 +-- XMLLITERALS ---------------+ |
 +-- XMLSTRIPALL ---------------+ |
 | |
 +-- NOTOTALS --+
 | |
 +-- COLHEADBRK ------------------ (-+------------- char ----+--) ----+
 +------------ "char" ---+
 +------------ 'char' ---+

(1) Default values for Boolean options (YES or NO) differ for each option.

REPORT Definition OPTIONS

2024/09/02 11:04:59 FileKit REPORT Utility 178

option (2/2):

 (2)
 +- INCLUDE -+
 | |
 >>---+-- NUMBLANK ---+- (------------+-----------+------------------) ---+--><
 +-- NUMDUP -----+ | | |
 | +- EXCLUDE -+ |
 | |
 | +- NO --+ +- INCLUDE -+ +---- * -----+ |
 | | | | | | | |
 +-- NUMTrunc ----- (-+-------+--+-----------+--+------------+--) ---+
 | | | | | +-- char ----+ |
 | +- YES -+ +- EXCLUDE -+ +- "char" ---+ |
 | +- 'char' ---+ |
 | |
 | +- ,ALL -----+ |
 | | | |
 +-- DETAIL ---------------------- (-- nlines --+------------+--) ----+
 | | | |
 | +- ,DISPlay -+ |
 | |
 | +------- , -------------+ |
 | v | |
 +-- FIELDName ------------------- (-+- SHORT ---------------+--) ----+
 | +- LONG ----------------+ |
 | |

 | |
 +-- REPort ---------------------- (-+- DB2 -----------------+--) ----+
 | +- SDE -----------------+ |
 | +- SMF -----------------+ |
 | |
 +-- SMFDATEHI -----------------+- (-+- timestamp -----------+--) ----+
 +-- SMFDATELO -----------------+ +- -days -------------+ |
 | |
 | +------- , -------------+ |
 | v | |
 +-- SMFJOBNAME ------------------ (-+- jobname -------------+--) ----+
 | |
 | +------- , -------------+ |
 | v | |
 +-- SMFSID ---------------------- (-+- sid -----------------+--) ----+
 | |
 | +------- , -------------+ |
 | v | |
 +-- SMFTYPES -------------------- (-+- rectype -------------+--) ----+
 | +- rectype:rectype -----+ |
 | +- rectype-subtype -----+ |
 | +- rectype#subtype -----+ |
 | |
 | +------- , -------------+ |
 | v | |
 +-- SMFUSERID ------------------- (-+- username ------------+--) ----+
 | |
 | +------- , -------------+ |
 | v | |
 +-- FIND ------------------------ (-+- string --------------+--) ----+
 | |
 | +- OR ------------------+ |
 +-- SMFLOGIC -------------------- (-+-----------------------+--) ----+
 | +- AND -----------------+ |
 | |
 +-- HEADWidth -----------------+- (--- int --------------------) ----+
 +-- ILIM ----------------------+
 +-- OLIM ----------------------+
 +-- PAGEDepth -----------------+
 +-- TAGLEN --------------------+

(2) Default values for NUMBLANK and NUMDUP (INCLUDE or EXCLUDE) differ for each option.

Synonyms:

OPTIONS OPTION

REPORT Definition OPTIONS

2024/09/02 11:04:59 FileKit REPORT Utility 179

Parameters:

ASA[(YES|NO)]
Applicable only to printed output, ASA specifies whether or not the first position of each report line is
reserved for mainframe EBCDIC printer ASA/ANSI carriage control symbols.

By default, ASA print symbols are generated. The following ASA characters are used:

ASA Description
HEX CHAR

X'40' (blank) Space one line and print (single spacing).

X'F1' 1 Skip to a new page and print.

BIEQual[(YES|NO)]
BIEQUAL or one of its synonyms (BLANKIFEQUAL, BLANKWHENEQUAL or BWEQUAL) specifies
whether or not an entry in a report detail line will be displayed as blank if the column value matches that in
the same column of the previous report detail line.

The operand value specified on option BIEQUAL will apply to all column entries. Specify BIEQUAL on
individual entries in the COLUMNS section if the option BWEQUAL(YES) is to apply only to values in
specific columns.

BIEQUAL(NO) is default and so equal values on successive detail lines are not converted to blanks.

BIZ[(YES|NO)]
BIZ or one of its synonyms (BLANKIFZERO, BLANKWHENZERO or BWZ) specifies whether or not a zero
(0) value returned for any numeric input field defined in the COLUMNS section is converted to a blank in the
report output.

By default, zero values are not converted. If a BLANKWHENZERO section exists, then the BIZ option is
ignored and only zero values in the numeric columns specified in the BLANKWHENZERO section control
statements are converted to blank.

BRKSORT[(YES|NO)]
Applicable only to printed output, BRKSORT specifies whether or not an interdependency exists between
BREAK and SORT field definitions.

A #GRAND break may be specified regardless of the setting of BRKSORT. Whether or not it is specified in
the BREAK section, the #GRAND break is always treated as the 1st break level in the control break
sequence hierarchy.

For BRKSORT(NO), a control break may be defined based on any input, computed or built-in field,
regardless of whether the break field is a one on which input records will be sorted (via the SORT section).
The order in which break fields are defined in the BREAK section determines the hierarchical sequence of
break levels that follow the #GRAND break. BRKSORT(NO) is default for REPORT processing.

BRKSORT(YES) may be used to allow only break fields that are also specified as sort key fields within the
SORT section. The number of control breaks defined may be less than or equal to the number of sort key
fields. If multiple control breaks are defined, then the order in which key field names are specified in the
SORT section, and not the order in which control breaks are defined in the BREAK section, determines the
hierarchical sequence of break levels that follow the #GRAND break. Error ZZSR024E is returned if a break
field is used which is not a specified sort key field.

If a SORT section exists, then the REPORT utility will perform its own sort of the input records based on the
sort key fields. Therefore, if input records are already in the required sequence or if DB2 table input is used,
then BRKSORT(YES) should not be used.

BRKTOTALS[(YES|NO)]
Applicable only to printed report output and ignored for CSV, JSON and XML output, BRKTOTALS specifies
whether or not default TOTAL lines are generated for all control break definitions other than the #GRAND
control break.

BRKTOTALS(YES) is default and so the REPORT utility automatically generates a TOTAL break line
specification for each BREAK control statement that does not have the fieldname "#GRAND" and on which
TOTAL is not already specified. Therefore, a break line containing the statistic column sub-totals will be
printed following each control break group in the report output.

BRKTOTALS(NO) will override this default for all control breaks except the #GRAND break. If
BRKTOTALS(NO) is specified, the statistics column totals line will still be printed for a control break if the
TOTAL parameter has been explicitly specified on the control break definition.

See GRANDTOTAL for controlling default output of grand total values for an explicitly defined or utility
generated #GRAND break definition.

The value of BRKTOTALS is also set by option TOTALS.

REPORT Definition OPTIONS

2024/09/02 11:04:59 FileKit REPORT Utility 180

BRKULINE[(YES|NO)]
Applicable only to printed report output and ignored for CSV, JSON and XML output, BRKULINE specifies
whether or not statistics column values are to be underlined in the printed report.

BRKULINE(YES) is default and so a line containing hyphen/minus symbols ("-") or equals symbols ('=') is
printed following each control break group, serving to underline the column values for which statistic data
(totals, averages maximums, etc.) is reported.

Hyphen/minus symbols are used for the underlining that follows standard control break groups and equals
symbols are used following the #GRAND control break group. For the #GRAND control break group only,
the underline is repeated following the last break line to contain a reported statistics value.

BRKULINE(NO) will suppress all statistic column underlining.

COLHEAD[(YES|NO)]
Applicable only to printed report output and ignored for CSV, JSON and XML output, COLHEAD specifies
whether or not column headers are included in the printed output.

COLHEAD(YES) will print column headers and is default if the report contains single line column detail
lines.

COLHEAD(NO) will suppress the print of column headers and is default if the report contains multi-line
column detail lines. (i.e. if <NEWLINE> is used in the COLUMNS section).

If COLHEAD(YES) is used for a report that contains multi-line column detail lines, then only the column
headings belonging to columns defined in the first detail line will be printed. Any heading text specified or
implied for column definitions the follow the <NEWLINE> tag will therefore be ignored.

COLHEADBRK(char | "char" | 'char')
Applicable only to printed report output and ignored for CSV, JSON and XML output, COLHEADBRK
specifies the character to be used as the column header break symbol used in column definitions in the
COLUMNS section.

The text of a column header is supplied as a quoted character string literal on a column definition. The
column header break symbol may be included in the quoted string to indicate a break in the header. When
printed, the text that follows a header break symbol occupies a new column header line and is aligned
below the header text that comes before it.

COLHEADBRK('|') is default indicating that the vertical bar character ('|') is the column header break
symbol. Note that the assigned (or default) character used as the header break symbol prevails until
another COLHEADBRK option is encountered in the report definition.

Note that the column header break symbol will be treated as being part of the header text if it is escaped by
another header break symbol immediately following. e.g. In the following, the printed header text for column
RESPONSE will be "YES|NO", not "YES" on the first header line and "NO" on the second.

 OPTIONS: COLHEADBRK('|')
 COLUMNS: RESPONSE 'YES||NO'

CSVLITERALS[(YES|NO)]
Applicable only to CSV report output, CSVLITERALS specifies whether or not literal values specified in the
in the COLUMNS section are included as values in the CSV output detail lines.

CSVLITERALS(NO) is default and will exclude column field literal values from the CSV output.

CSVQUOTED[(YES|NO)]
Applicable only to CSV report output, CSVQUOTED specifies whether or not all values are to be enclosed
in quotation marks (").

CSVQUOTED(YES) is default and so values are always enclosed in quotation marks.

CSVQUOTED(NO) indicates that values are not enclosed in quotation marks unless it is necessary to do so
in order to output a valid value (e.g. if a value contains the CSV separator character - default comma (",").

CSVSTRIPALL[(YES|NO)]
Applicable only to CSV report output, CSVSTRIPALL specifies whether or not leading and trailing blanks
are to be stripped from all values, so that the comma separator immediately follows the last non-blank
character on all but the last value in the output line.

CSVSTRIPALL(NO) is default and so values are not stripped of leading and trailing blanks. Each value will
be of a fixed length equal to the specified (or default) field width.

CSVSTRIPALL(YES) indicates that all CSV values are to be stripped of leading and trailing blanks.

DB2NULL[(YES|NO)]
For DB2 table input only, DB2NULL specifies whether or not the default Data-Edit NULL value output
indicator character is displayed for a null value in a DB2 column defined with NULL. (See the NULLCHAR
Data-Edit SET/QUERY/EXTRACT option).

REPORT Definition OPTIONS

2024/09/02 11:04:59 FileKit REPORT Utility 181

DB2NULL(NO) is default and so DB2 NULL values are displayed as blanks.

DB2NULL(YES) will display the NULLCHAR null value character (default is the underscore symbol "_").

DETAIL(nlines[,ALL|DISPLAY])
DETAIL specifies the maximum number of detail lines (nlines) to be reported in each control break group
and whether statistics are to be generated for all detail lines in the control group (ALL) or only those
displayed (DISPLAY). If there are no control breaks in the report, DETAIL will specify the maximum number
of report detail lines to be printed.

Note that, although break lines are not written for CSV, JSON and XML output, BREAK definitions may be
specified and the DETAIL option used to limit the number of CSV, JSON and XML lines reported for each
consecutive occurrence of a value in the break key field.

If ALL (the default) is selected:

The number of detail lines (#ITEMS) in the control group includes both reported and unreported
lines.

1.

Reported statistics values (e.g. totals, averages, etc.) are calculated based on values in both
reported and unreported lines.

2.

Field references (fieldname) in break line print expressions that follow the control group, are
substituted with values from the last detail line of the control group, whether or not that line is
reported

3.

If DISPLAY is selected:

The number of detail lines (#ITEMS) in the control group includes only reported lines. (i.e. #ITEMS
is always less than or equal to nlines.),

1.

Reported statistics values (e.g. totals, averages, etc.) are calculated based on values in reported
lines only.

2.

Field references (fieldname) in break line print expressions that follow the control group, are
substituted with values from the last reported detail line of the control group.

3.

Break lines, column headings, page headings and page footings are unaffected by the DETAIL option.
DETAIL(0) will suppress report output of all detail lines.

In the following example, the DETAIL option is used to report the names of the first 5 tracks on an album.
Beacuase ALL is default, the value of the #ITEMS built-in field, reported following each control group break,
will reflect the total number of tracks on the album.

 OPTIONS: NOTOTALS DETAIL(5)
 HEAD: #TIMESTMP / "First 5 Album Tracks" / "PAGE" #PAGE (RIGHT,4)
 COLUMNS: ALBUM; TRACK-NUM 4; NAME 50
 SORT: ALBUM; TRACK-NUM
 BREAK: ALBUM

Default is to print all detail lines.

FIND(string, ...)
Applicable only to SDE and SMF type input (not DB2), FIND specifies one or more comma separated
search strings (string) which are used to perform Unformatted Record Find String matching for input
record filtering.

Note: Filtering of DB2 table rows based on its contents may be achieved using a WHERE clause in the DB2
operands of the INPUT section.

The format of string is described by search values under "Record Filtering".

If a match on any of the FIND search strings is located at any position within an unformatted input record,
then Unformatted Record Find String matching will return a true result (1). Otherwise a false result (0) is
returned.

Unformatted Record Find String matching is one of the content match criteria for SMF record filtering. If a
true result is returned, then the SMF record will be passed for REPORT processing only if at least one of
the following is true:

No other SMF content match criteria is specified.1.
The SMF content match criteria logical operation is "OR" (see SMFLOGIC).2.
All other specified SMF content match criteria each return a true result. (see SMFJOBNAME,
SMFSID, SMFTYPES and SMFUSERID)

3.

For non-SMF input, no other content match criterion is supported. Therefore, a record will be passed for
REPORT processing if a true result is returned by Unformatted Record Find String matching.

For example, the following will set a true condition if one of the strings "SYS1.MACLIB", "SYS1.MIGLIB",
"SYS1.MODGEN" or "SYS1.MSGEN" (upper or lower case) exists at any location within the unformatted
record.

FIND(SYS1.MACLIB, SYS1.MIGLIB, SYS1.MODGEN, SYS1.MSGEN)

REPORT Definition OPTIONS

2024/09/02 11:04:59 FileKit REPORT Utility 182

FIND and other content match criterion are invalid if a filter expression is provided via the FILTER section of
the report definition. If both a FILTER section and a FIND specification exists, then error message
ERR065E or ERR066E is returned.

Note that all search strings specified in the FIND option will be overridden by FIND search strings entered
as parameters via the following:

The Formatted Record Report panel♦
The SMF Report panel♦
The FIND operand of the REPORT primary command♦

FIELDNAME([SHORT][,LONG])]
FIELDNAME forces the REPORT utility to assign input field values to REXX variables that match the
SHORT (unqualified) format of the field name, the LONG (qualified) format of the field name or both
formats.

By default, the REPORT utility will assign an input field value to a REXX variable name that exactly matches
the fieldname used in the COLUMNS or REQUIRED section to identify the input field. The variable name
may be simple (short), matching the name of the field, or compound (long), containing dots/periods that
delimit each field name group qualifier.

For example, the following column definitions are based on input fields "RECFM" and "DSN" which both
belong to the group structure "JFCB" in SMF record type 14 mapping
"SMF014_INPUT_or_RDBACK_Dataset". However, the fieldname specification for "RECFM" is unqualified
(does not include the "JFCB" group structure name), whereas "DSN" is qualified. By default, field values will
be assigned to REXX variables "RECFM" and "JFCB.DSN".

 SMF014_INPUT_or_RDBACK_Dataset.RECFM
 SMF014_INPUT_or_RDBACK_Dataset.JFCB.DSN

These variables may be referenced in the REXX routine identified by the COMPUTE section to establish
compute-field values.

Where an input field has a name that is non-unique within the record structure, a fully-qualified fieldname
reference is necessary to specify the group structure hierarchy to which the field belongs and so accurately
identify the required input field. Since a qualified fieldname uses a dot/period to delimit each group structure
name, the field value will be assigned to a variable that includes these qualifying dots/periods (i.e. a REXX
compound variable).

To reference an input field identified by a fully-qualified fieldname using just its unqualified field name, then
option FIELDNAME(SHORT) should be specified. In addition to assigning the field value to a REXX
compound variable name, this option will force the REPORT utility to also assign the field value to a simple
variable name that matches the lowest level qualifier in the fieldname specification (i.e. the field name itself).

FIELDNAME(LONG) may be specified to force the REPORT utility to assign field values to compound
variable names. This may be useful if all field definitions have been provided using unqualified fieldname
specifications but the field exists within a group structure of the record type structure.

Note that, use of FIELDNAME(SHORT or LONG) may be unnecessary. For input fields defined via the
COLUMNS and/or REQUIRED sections, the REPORT utility will assign field values to both the long and
short formats of the REXX input field variables when the following conditions are both true:

A mixture of qualified and unqualified fieldname specifications are used.1.
At least one of the unqualified field names identifies a field in a group structure.2.

GRANDTOTAL[(YES|NO)]
Applicable only to printed report output and ignored for CSV, JSON and XML output, GRANDTOTAL
specifies whether or not a default TOTAL line is generated for the #GRAND control break.

GRANDTOTAL(YES) is default and so the REPORT utility automatically generates a TOTAL break line
specification for the BREAK control statement with fieldname "#GRAND" if TOTAL is not already specified.
Therefore, a break line containing the statistic column grand totals will be printed at the end of the report
output.

If no BREAK section exists and GRANDTOTAL(YES) is in effect, then a #GRAND break is generated to
report grand totals whether or not the report output is sorted.

GRANDTOTAL(NO) will suppress generation of grand totals and a grand totals break line whether or not
the TOTAL parameter is explicitly specified on the #GRAND control break definition.

See BRKTOTALS for controlling default output of sub-total values for explicitly defined break definitions with
a file name other than #GRAND.

The value of GRANDTOTAL is also set by option TOTALS.

HEAD[(YES|NO)]
Applicable only to printed report output and ignored for CSV, JSON and XML output, HEAD specifies
whether or not page header lines are to be included in the report output.

REPORT Definition OPTIONS

2024/09/02 11:04:59 FileKit REPORT Utility 183

HEAD(YES) is default and will print a page header at the top of each new page, whether or not one has
been defined via the HEAD section. Page header lines are printed at the start of each new page. If no
HEAD section exists but HEAD(YES) is in effect, then the default page header will be generated.

HEAD(NO) will suppress output of page header lines and the blank line that follows. The report column
headers will occupy the first line of each new page. If option COLHEAD(NO) is in effect, then a report detail
line will occupy the first line of each new page.

HEADWIDTH(int)
Applicable only to printed report output and ignored for CSV, JSON and XML output, HEADWIDTH (or its
synonym HW) specifies the width of the page header and footer lines within the report output.

Page header and footer segments of text are aligned within the header and footer lines using the header
width value. By default, the header width will be equivalent to the page width value which is derived from the
maximum lengths of text generated in page header, page footer, column detail and control break lines.

ILIM(int)
Specifies an input limit, the maximum number of records (or DB2 table rows) that will be read from the input
data source.

For DB2 table input, the specified ILIM value will take precedence over any FOR nrecs ROWS specification
in the INPUT section of the report definition. The input limit will determine the number of rows fetched from
the DB2 result table. Note, however, that any value specified by ILIM or FOR will be ignored if DB2 operand
SCROLL is also specified to use a DB2 table scrollable cursor.

Each input record or DB2 row is processed sequentially until the input record threshold (int) is reached. At
this point, sorting occurs if a SORT section exists in the report definition, otherwise REPORT processing
ends. When a SORT section is not present, then REPORT processing may end before the input limit is
reached if a specified OLIM output limit threshold is reached first.

Where the input source is not a DB2 table, the input limit includes records which may subsequently be
excluded from REPORT processing by other record filtering techniques. For example, use of a FILTER
section in the report definition or, alternatively, specification of SMF Low/High date thresholds
(SMFDATELO/SMFDATEHI) or content match criteria (FIND, SMFJOBNAME, SMFSID, SMFTYPES and
SMFUSERID).

ILIM(0) implies no input record limit and is set by default when no ILIM operand is supplied and no DB2
FOR nrecs ROWS specification exists.

Note that the record input limit specified in the ILIM option will be overridden by an ILIM value entered as a
parameter via the following:

The Formatted Record Report panel♦
The SMF Report panel♦
The ILIM operand of the REPORT primary command♦

JSONARRAY[(YES|NO)]
Applicable only to JSON report output, JSONARRAY specifies whether field values for each report line are
part of a single JSON object, or one object within an array of objects.

REPORT generates a JSON object literal (in braces "{}") comprising a key/value pair for each column field
in the output.

JSONARRAY(NO) is the default and so the generated JSON object literal is the "value" in a JSON object
comprising a single key/value pair, where "key" is the record sequence number expressed as a string (in
quotation marks).

{
 "000000001" : {"NAME" : "Daniel Ricciardo", "COUNTRY" : "Australia" }
 ,"000000002" : {"NAME" : "Lando Norris", "COUNTRY" : "United Kingdom" }
}

JSONARRAY(YES) will generate the JSON object literal as one object value in an array of comma
separated object values enclosed in square brackets ("[]"). The array itself is the "value" in a JSON
key/value pair, where "key" is the string "FileKit_Report".

{"FileKit_Report" :
 [
 {"NAME" : "Daniel Ricciardo", "COUNTRY" : "Australia" }
 ,{"NAME" : "Lando Norris", "COUNTRY" : "United Kingdom" }
]
}

REPORT Definition OPTIONS

2024/09/02 11:04:59 FileKit REPORT Utility 184

JSONINDENT[(YES|NO)]
Applicable only to JSON report output, JSONINDENT specifies whether or not each key/value pair is to
appear on its own line of the JSON output.

JSONINDENT(NO) is the default so that all key/value pairs belonging to the same report detail line will be
written to the same line of the JSON output.

JSONINDENT(YES) indicates that all key/value pairs belonging to the same report detail line will be written
to concurrent lines of the JSON output and indented beneath the opening and closing JSON object string
braces ("{}").

{
 "000000001" :
 {"NAME" : "Daniel Ricciardo",
 "COUNTRY" : "Australia"
 }
 ,"000000002" :
 {"NAME" : "Lando Norris",
 "COUNTRY" : "United Kingdom"
 }
}

JSONLITERALS[(YES|NO)]
Applicable only to JSON report output, JSONLITERALS specifies whether or not literal values specified in
the in the COLUMNS section are included as the "string" value in a key/value pair of the JSON output.

JSONLITERALS(NO) is default and will exclude column field literal values from the JSON output.

Note that the column entry header value is used as the "key" which is the same as the literal value by
default.

JSONQUOTED[(YES|NO)]
Applicable only to JSON report output, JSONQUOTED specifies whether or not all values are to be treated
as JSON strings and so enclosed in quotation marks (").

JSONQUOTED(YES) is default and so values are always enclosed in quotation marks.

JSONQUOTED(NO) indicates that only non-numeric values are treated as strings and so enclosed in
quotation marks. Numeric values are not enclosed in quotation marks.

JSONSTRIPALL[(YES|NO)]
Applicable only to JSON report output, JSONSTRIPALL specifies whether or not leading and trailing blanks
are to be stripped from all values. This is particularly relevant to quoted JSON string values where leading
trailing blanks would be treated as part of the string value.

JSONSTRIPALL(NO) is default and so values are not stripped of leading and trailing blanks. Each value will
be of a fixed length equal to the specified (or default) field width.

JSONSTRIPALL(YES) indicates that all JSON values are to be stripped of leading and trailing blanks.

LINESTRIP[(YES|NO)]
LINESTRIP specifies whether or not trailing blank characters are to be stripped from the lines of text written
to the REPORT output.

LINESTRIP(NO) is default and so trailing blanks will be preserved when writing report lines. This is
important when writing reports comprising only report detail lines (no page or report breaks) to be used as
fixed length data input to another application.

NEWPAGE[(YES|NO)]
Applicable only to printed report output and ignored for CSV, JSON and XML output, NEWPAGE indicates
whether the printed report will span multiple pages or will occupy a single page of unrestricted page depth.

NEWPAGE(YES) is default and will trigger a new page when the number of lines per page (page depth)
value is reached. Note that REPORT utility may print blank filler lines at the end of a page in order to
prevent multi-line report detail lines or control break lines belonging to a single control break definition from
being split over 2 pages. (See option SPLITBREAK .)

NEWPAGE(NO) will ignore the specified or default page depth value and suppress the start of a new page.
The report will comprise a single page with page heading lines at the start (if HEAD(YES) is set) and page
footing lines at the end (if a FOOT section exists). If NEWPAGE(NO) is used, the printed report will never
contain blank filler lines.

NOTOTALS
Equivalent to TOTALS(NO). See TOTALS option.

NUMBLANK[(INCLUDE|EXCLUDE)]
NUMBLANK specifies whether or not numeric field values in the report PRINT output that are displayed as
blanks as a result of a BIEQUAL specification, are to be included in or excluded from column statistics
calculations.

REPORT Definition OPTIONS

2024/09/02 11:04:59 FileKit REPORT Utility 185

NUMBLANK(EXCLUDE) is default and so values appearing as blanks in columns containing numeric data
will not be included in total, average, minimum and maximum statistics calculations performed for that
column.

NUMDUP[(INCLUDE|EXCLUDE)]
NUMDUP specifies whether or not numeric field values in the report PRINT output that are a duplicate of
the column value found on the previous detail line, are to be included in or excluded from column statistics
calculations.

A duplicate column value is an input-field value that has not been reset and no new input value has been
obtained before the detail line is written. This may occur when output is triggerred by a REPEAT record-type
that corresponds to a secondary record segment, and values in the primary record segment are not reset.

NUMDUP(INCLUDE) is default and so duplicate numeric values are included in total, average, minimum
and maximum statistics calculations performed for that column.

NUMTRUNC[(YES|NO [INCLUDE|EXCLUDE] [char | "char" | 'char'])]
Specifies whether truncation of displayed numeric values will occur. If not, it defines the character used to
fill the display of a field containing numeric values that would be truncated, and also determines whether or
not these values are included in or excluded from column statistics calculations. Number truncation may
occur if the width of the display field is not sufficient to display all digits of the numeric value.

For NUMTRUNC(YES), the value will be abbreviated to fit within the display width. Number compression
may result in the loss of the least significant digits. If these digits are non-zero and the value is not
expressed with an exponent, then the value becomes an approximation and so is prefixed with the
appropriate inequality symbol ("<" or ">"). If the display width is such that the numeric value cannot be
abbreviated without loss of integrity, the display area will be filled with the number truncation character
"char".

For NUMTRUNC(NO), if stripping of non-significant zero digits still does not allow the value to fit within the
field display width, then the display area is filled with the number truncation charcater "char".

Number compression will perform the following steps until the number fits within the display width. Note
that, for normalised floating point values that include an exponent, fractional digits are those belonging to
the mantissa.

Strip non-significant leading and fractional zeroes.1.
Strip least significant, non-zero fractional digits and decimal point "." if no fractional digits remain. If
the value does not contain an exponent, then the first character of the display area will be an
inequality symbol.

2.

For fixed-point values only (i.e. no exponent), strip least significant, whole number digits in
multiples of 3 replacing them with "K", then "M", "G", "T", "P" respectively. If any of these stripped
digits are non-zero, then the first character of the display area will be an inequality symbol.

3.

INCLUDE and EXCLUDE indicates that numeric values that are replaced with the numeric truncation
character "char" in the output, will be included in or excluded from column statistics calculations
respectively. INCLUDE is default.

This applies to numeric fields defined as detail line column entries (COLUMNS), fields specified in page
heading (HEAD) or footing (FOOT) print expressions, break key field definitions (BREAK), sort key field
definitions (SORT), required field definitions (REQUIRED) and fields occuring in BREAK line print
expressions.

NUMTRUNC(NO,INCLUDE,'*') is default indicating that numeric values that are too long to fit in the display
field are not truncated, are included in statistics calculations and that asterisk characters ('*') are used to fill
the field display area.

OLIM(int)
OLIM specifies the maximum number of detail line report records (int) that may be written to the output
dataset.

Once the number of output report detail lines reaches this limit, no further detail lines will be written and so
end of report processing is triggered. The input of records/DB2 table rows or sorted detail lines (if a SORT
section exists) will end.

OLIM(0) implies no output record detail line limit and is set by default when no OLIM option value is
specified.

Note that the output detail line limit specified in the OLIM option will be overridden by an OLIM value
entered as a parameter via the following:

The Formatted Record Report panel◊
The DB2 Report - Table/View panel◊
The DB2 Report - SQL Query Control File panel◊
The DB2 Report - SQL Query Statement panel◊
The SMF Report panel◊
The OLIM operand of the REPORT primary command◊

REPORT Definition OPTIONS

2024/09/02 11:04:59 FileKit REPORT Utility 186

PAGEDEPTH(int)
Applicable only to printed report output and ignored for CSV, JSON and XML output, PAGEDEPTH (or its
synonym PD) specifies the number of lines (int) on each report page. If not specified, the page depth will be
the value assigned by the PAGEDEPTH Data Editor option. (See "PAGEDEPTH - SET/QUERY/EXTRACT
Option" in the "FileKit Data Editor (SDE)" manual.)

Note that the page depth value specified in the PAGEDEPTH option will be overridden by a PAGEDEPTH
value entered as a parameter via:

The Formatted Record Report panel♦
The DB2 Report - Table/View panel♦
The DB2 Report - SQL Query Control File panel♦
The DB2 Report - SQL Query Statement panel♦
The SMF Report panel♦
The PAGEDEPTH operand of the REPORT primary command♦

PAGEPAD[(AUTO|YES|NO)]
PAGEPAD specifies whether or not blank lines are to be written to the last page of a PRINT output report to
pad the page to the specified (or defaulted) PAGEDEPTH.

AUTO is the default and will pad the last page with blank lines only if it is not the first (and therefore only)
page of the report. No additional page padding is necessary if a page footing has been defined via a report
definition FOOT: section.

REPORT(DB2|SDE|SMF)
REPORT specifies the type of input (DB2, SDE or SMF) from which the report is generated.

DB2 A DB2 result table.

SDE A data set or HFS/ZFS file where fields are mapped by a copybook structure or via fields
definitions in the MAP section.

SMF An on-line SMF data set, or a data set containing SMF DUMP (IFASMFDL or IFASMFDP)
output.

The REPORT option determines the format of the syntax specified in the INPUT section.

If the REPORT option is not specified, then the input type is determined by the report generation panel used
to create the report, or via specification of a xxx-INPUT-BEG / xxx-INPUT-END operand pair on the
REPORT primary command (where xxx is one of "DB2", "SDE" or "SMF"). If, however, the REPORT
primary command is executed without specifying one of these operand pairs and the REPORT option is not
specified, then the input type defaults to be SDE.

Note that, if the REPORT input type implied by the Utility panel, or via a xxx-INPUT-BEG / xxx-INPUT-END
operand pair on the REPORT primary command, is different to that specified by the REPORT option, then
only input field/operand values that are applicable to the REPORT option specification will be used. All other
non-applicable operands will be silently ignored.

REXXCOMPOUND[(YES|NO)]
REXXCOMPOUND specifies whether or not the REXX variable names, generated for input-fields identified
using a qualified field name, inherit the dot/period (".") field name qualifier separator character and so define
a REXX compound symbol variable name.

When option FIELDNAME(LONG) is set (default) and a COMPUTE: and/or DISPLAY-EXIT: section REXX
procedure exit exists, then the REPORT utility will assign input-field values to REXX variables of the same
name as that used to identify the input-field (minus the record-type name). These variables may then be
referenced in the REXX procedures. For example, an input-field identified by
"SMF030_Identification.zJOBNAME" in the COLUMNS: or REQUIRED: section will assign the current value
for this field to the REXX variable name "zJOBNAME".

If the input-field is identified using a qualified name (so that the name includes an owning group field name),
then the name of the REXX variable will contain the "." (dot/period) qualifier separator, making it a REXX
compound variable name. For example an input-field identified by
"SMF030_EXCP.zEXP.zBSZ.zBSZLarge" will assign the current value for this field to REXX compound
variable name "zEXP.zBSZ.zBSZLarge".

It is possible that use of a compound variable may cause problems if any of the qualified names in the tail
are also used elsewhere in procedure as simple variable names. In this case REXXCOMPOUND(NO) may
be specified to ensure that the REPORT utility uses only simple variable names. These names are still
based on the input-field identifier, but use "_" (underscore) symbols in place of "." (dot/period) qualifier
separator symbols. For example, the input-field identified by "SMF030_EXCP.zEXP.zBSZ.zBSZLarge" will
assign the current value for this field to REXX simple variable name "zEXP_zBSZ_zBSZLarge".

REXXCOMPOUND(YES) is default and REXX compound variable names are possible.

SELECTJOIN[(YES|NO)]
Applicable only to SMF type input or SDE input of segmented records. SELECTJOIN specifies whether or
not values for input-fields that belong to a secondary record segment whose record-type is not identified in
a report definition REPEAT: section. are to be joined to the primary segment input.

REPORT Definition OPTIONS

2024/09/02 11:04:59 FileKit REPORT Utility 187

For efficiency, the REPORT utility bypasses processing of secondary record segments that are not
specified in the REPEAT: section, and instead joins the specified segment field values to the primary
segment data.

SELECTJOIN(NO) will stop this default action so that secondary segments of all record-types identified in
the report definition are processed, and field values are no longer joined to the primary segment.

The effect of SELECTJOIN can only been witnessed if BROWSE output is requested on invocation of the
REPORT utility (via the utility panels or primary command).

SHORTHEADERS[(YES|NO)]
Applicable only to printed report output and ignored for CSV, JSON and XML output, SHORTHEADERS
specifies whether or not the shortened form of generated (default) column headers is used.

In the COLUMNS section, the REPORT utility will generate a column header for any column definition
where no column header text is specified. This default header includes the name of the field used to define
the column. For headers generated for columns defined by input fields, this header may also include text
obtained from any REMARK comments assigned to the input field definition.

Note that a field definition REMARK comment text may exist if the FileKit SDO record mapping structure
has been created using the Direct Definition form of the CREATE STRUCTURE primary command. See
"FileKit SDE Data Editor" reference manual for details of the CREATE STRUCTURE command.

SHORTHEADERS(NO) is default and so the REPORT utility will construct default column headers using
REMARK comment text if available. The generated header text is split over several lines in order to best
preserve the column data width. However, if a word in the REMARK text is longer than the column data
width, then the width of the column is extended accordingly. The name of the input field will occupy the last
line of the default column header.

SHORTHEADERS(YES) will use the shortened form of the default column header which is simply the name
of the field from which the column is defined.

Field definitions in FileKit SMF record mapping SDO structures are assigned REMARK text. Therefore,
SMF reports will by default contain column headers that describe the column contents.

SHORTSTATS[(YES|NO)]
Applicable only to printed report output and ignored for CSV, JSON and XML output, SHORTSTATS
specifies whether or not a shortened form of a statistics value will be displayed if the length of the statistics
value is greater than the field display area width.

If SHORTSTATS(NO) is set and the statistics value exceeds the width of the field display area, the display
field will be filled with the default number truncation filler character ("*"). See option NUMTRUNC.

If SHORTSTATS(YES) is set (the default), a statistics value that exceeds the width of the field display area
will be displayed in a shortened form that fits within the field display area.

For a time/duration, the value is truncated on the right preserving the left, most significant characters. A
greater than symbol (">") prefix is added to indicate that the value has been truncated. For example, a total
of duration field values may be "138:26:22" (138 hours, 26 minutes, 22 seconds) but the width of the display
field is only 5. Therefore, the shortened value would display as ">138:".

The sortened form of a numeric statistics value is an approximation of the original numeric value. The
number displayed may include a decimal point and will have a multiplier suffix of either K, M, G, T or P
representing a number of thousands (103), millions (106), billions (109), trillions (1012) or quadrillions (1015)
respectively. The length of the number and the suffix used will depend on the number of digits in the original
value and the width of the field display area. Unless the shortened value exactly matches the original value,
the shortened value will also have a greater than symbol (">") prefix indicating that the original value is in
excess of the shortened value.

If the shortened number also exceeds the width of the field display area field, then the field will be filled with
the number truncation filler symbol. The following table demonstrates how a statistics value will appear
when shortened for different display field area widths.

Display Values
10 1000000 1100000 1183000 3451230 9893000000 9893400000
6 1000K 1100K 1183K >3451K 9893M >9893M
5 1000K 1100K 1183K >3.4M 9893M >9.8G
4 1M 1.1M >1M >3M >9G >9G
3 1M >1M >1M >3M >9G >9G
2 1M ** ** ** ** **

SMFDATEHI(timestamp | -days)
Applicable only to SMF type input (not DB2 or SDE), SMFDATEHI specifies a complete or partial absolute
timestamp (timestamp), or a negative number of days (-days) that corresponds to a timestamp value which
is relative to the current date. SMF records with a timestamp later than this upper limit will be excluded from
REPORT processing.

REPORT Definition OPTIONS

2024/09/02 11:04:59 FileKit REPORT Utility 188

Absolute and Relative timestamp specifications are described in detail by timestamp values under "Record
Filtering".

The start of every SMF record contains a common header which includes a timestamp (date and time) at
which the record was written to the SMF log (zTME). If a SMFDATEHI value is specified, only those SMF
records with a timestamp earlier than or equal to this high date and time will be passed on to SMF content
match criteria record filtering.

An absolute timestamp specification may be truncated to a minimum of 5 bytes ("yyyy/") in which case the
truncated numeric digits will be set to "9". For example, "DATEHI(2019/09/22 18)" is treated as
"DATEHI(2019/09/22 18:99:99.99)".

A relative timestamp, specified as number of days before the current date, will correspond to a date only.
For example, if the current date is 2020/03/05 then "DATEHI(-5)" would be equivalent to
"DATEHI(2020/02/29 99:99:99.99)" since 2020 is a leap year.

Note that the upper limit timestamp specified in the SMFDATEHI option will be overridden by the high date
and time values entered as parameters via the following:

The SMF Report panel◊
The DATEHI operand of the REPORT primary command◊

SMFDATELO(timestamp | -days)
Applicable only to SMF type input (not DB2 or SDE), SMFDATELO specifies a complete or partial absolute
timestamp (timestamp), or a negative number of days (-days) that corresponds to a timestamp value which
is relative to the current date. SMF records with a timestamp earlier than this lower limit will be excluded
from REPORT processing.

Absolute and Relative timestamp specifications are described in detail by timestamp values under "Record
Filtering".

The start of every SMF record contains a common header which includes a timestamp (date and time) at
which the record was written to the SMF log (zTME). If a SMFDATELO value is specified, only those SMF
records with a timestamp later than or equal to this low date and time will be passed on to SMF content
match criteria record filtering.

An absolute timestamp specification may be truncated to a minimum of 5 bytes ("yyyy/") in which case the
truncated numeric digits will be set to "0". For example, "DATELO(2018/09)" is treated as
"DATELO(2018/09/00 00:00:00.00)".

A relative timestamp, specified as number of days before the current date, will correspond to a date only.
For example, if the current date is 2019/11/13 then "DATELO(-28)" would be equivalent to
"DATELO(2019/10/16 00:00:00.00)".

Note that the lower limit timestamp specified in the SMFDATELO option will be overridden by the low date
and time values entered as parameters via the following:

The SMF Report panel◊
The DATELO operand of the REPORT primary command◊

SMFJOBNAME(jobname, ...)
Applicable only to SMF type input (not DB2 or SDE), SMFJOBNAME specifies one or more comma
separated job name search values (jobname) which are used to perform SMF Record Job Name
matching for input record filtering.

A jobname value may be specified as an unquoted, quoted or character literal string and may contain
one or more wildcard characters as described by search values under "Record Filtering". Unless jobname
contains an asterisk ("*") wildcard, which represents zero or more occurrences of any character, then the
jobname value will be truncated or padded with blanks to a length of 8 characters. Furthermore, if no
percent ("%") or asterisk ("*") wildcards are specified and jobname is an unquoted or quoted string, then all
alpha characters in the string will be upper cased.

A number of SMF record types contain a job name field (zJobName) at a fixed location within the record
data. This fixed position may be different for each of the SMF record types. The following SMF record types
are those that contain a zJobName field:

004
005
006

010
014
015

017
018
020

025
026
030

034
035
036

040
042
060

061
062
063

064
065
066

067
068
069

080
110
118

If an SMF record zJobName field contains a match on any of the supplied jobname values, then SMF
Record Job Name matching will return a true result (1). Otherwise, if no match is found for any of the
supplied jobname values or the SMF record does not contain a zJobName field, then a false result (0) is
returned.

SMF Record Job Name matching is one of the content match criteria for SMF record filtering. If a true result
is returned, then the SMF record will be passed for REPORT processing only if at least one of the following
is true:

REPORT Definition OPTIONS

2024/09/02 11:04:59 FileKit REPORT Utility 189

No other SMF content match criteria is specified.1.
The SMF content match criteria logical operation is "OR". (see SMFLOGIC).2.
All other specified SMF content match criteria each return a true result. (see SMFFIND, SMFSID,
SMFTYPES and SMFUSERID)

3.

Note that SMF Record Job Name matching and other content match criterion are invalid if a filter expression
is provided via the FILTER section of the report definition. If both a FILTER section and a job name
specification exists, then error message ERR066E is returned.

In the following example, a true result will be returned if the SMF record has a zJobName field that
specifically contains a job name "RSHD", contains a job name beginning with "GIM" or any job name of
length 5.

Job Name> RSHD, GIM*, %%%%%

Job names specified in the SMFJOBNAME option will be overridden by job name values entered as
parameters via the following:

The SMF Report panel♦
The JOBNAME operand of the REPORT primary command♦

SMFLOGIC(OR|AND)
Applicable only to SMF type input (not DB2 or SDE), SMFLOGIC specifies the logical operation (AND or
OR) to be used when determining the result of content match criteria record filtering.

The logical operation is used to combine the Boolean values (true or false) returned by each of the specified
content match criteria elements:

Unformatted Record Find String matching (FIND)◊
SMF Record Job Name matching (SMFJOBNAME)◊
SMF Record System Id matching (SMFSID)◊
SMF Record Type matching (SMFTYPES)◊
SMF Record User Name matching (SMFUSERID)◊

Content matching criteria elements may be specified as options in the report definition input, and/or passed
to the REPORT utility via command line operands or panel input fields.

The "AND" or "OR" logical operation is performed between each of the Boolean values returned by the
specified content matching criteria to produce an overall true (1) or false (0) result. If the overall result is
true, the record satisfies the content match criteria and is passed to REPORT generation processing.

If logical operation AND is used then the result returned by all of the content checking criterion elements
specified for the current REPORT execution must be 1 (i.e. true). If logical operation OR is used then only
one of the values returned by the content checking criterion elements must be 1 (true) in order to return a
true result for the record.

Note that other SMF record filtering controlled by high date (SMFDATEHI) / low date (SMFDATELO)
thresholds and input record limit (ILIM), does not form part of the content checking criteria and so is not
affected by the logical operation.

The default value for SMFLOGIC is "OR". However, note that the logical operation specified by the
SMFLOGIC option will be overridden by the logical operation value entered as a parameter via the
following:

The SMF Report panel♦
The LOGIC operand of the REPORT primary command♦

SMFONLINE[(YES|NO)]
Applicable only to SMF type input (not DB2 or SDE), SMFONLINE specifies whether or not SMF input
records are being processed directly from an SMF log data set (YES) or from an SMF archive data set
(NO).

Note that the REPORT utility does not support processing SMF records directly from the System Logger.

Unlike records written to an archive data set by the SMF DUMP (IFASMFDL and IFASMFDP) utilities,
records in an SMF log dataset are prefixed by an extra 4-byte record descriptor word (RDW) and so
record-type field mapping must be offset by 4 bytes. The OFFLINE/ONLINE specification will determine
whether this offset is to be applied by the REPORT utility.

Beware that any application, including the REPORT utility, that processes records directly from an online
SMF log data set, may prevent successful execution of an IFASMFDP CLEAR operation (usually triggered
by the IEFU29 exit). This is because the IFASMFDP CLEAR operation requires exclusive access to the
SMF dataset.

The default value for SMFONLINE is NO. However, the SMFONLINE option value will be overridden by the
Format value entered as a parameter via:

The SMF Report panel◊
The ONLINE/OFFLINE operand of the REPORT primary command◊

REPORT Definition OPTIONS

2024/09/02 11:04:59 FileKit REPORT Utility 190

SMFSID(sid, ...)
Applicable only to SMF type input (not DB2 or SDE), SMFSID specifies one or more comma separated
system identification search values (sid) which are used to perform SMF Record System Id matching for
input record filtering.

A sid value may be specified as an unquoted, quoted or character literal string and may contain one or
more wildcard characters as described by search values under "Record Filtering". Unless sid contains an
asterisk ("*") wildcard, which represents zero or more occurrences of any character, then the sid value will
be truncated or padded with blanks to a length of 4 characters. Furthermore, if no percent ("%") or asterisk
("*") wildcards are specified and sid is an unquoted or quoted string, then all alpha characters will be upper
cased.

All SMF record types contain a system identifier field zSID in the record header. If an SMF record zSID field
contains a match on any of the supplied sid values, then SMF Record System Id matching will return a true
result (1). Otherwise a false result (0) is returned.

SMF Record System Id matching is one of the content match criteria for SMF record filtering. If a true result
is returned, then the SMF record will be passed for REPORT processing only if at least one of the following
is true:

No other SMF content match criteria is specified.1.
The SMF content match criteria logical operation is "OR". (see SMFLOGIC).2.
All other specified SMF content match criteria each return a true result. (see SMFFIND,
SMFJOBNAME, SMFTYPES and SMFUSERID)

3.

Note that SMF Record System Id matching and other content match criterion are invalid if a filter expression
is provided via the FILTER section of the report definition. If both a FILTER section and a System Id
specification exists, then error message ERR066E is returned.

In the following example, a true result will be returned if the zSID field contains a system id value "XS1", a
value beginning with "S0" followed by any single character followed by "1", or a value of up to 4 characters
in length ending in "Z".

SID('xs1', S0%1, '*Z')

System names specified in the SMFSID option will be overridden by system identification values entered as
parameters via the following:

The SMF Report panel♦
The SID operand of the REPORT primary command♦

SMFTYPES({rectype | rectype:rectype | {rectype-subtype | rectype#subtype} }, ...)
Applicable only to SMF type input (not DB2 or SDE), SMFTYPES specifies one or more comma separated
SMF record type identification values (rectype, rectype:rectype, rectype-subtype or rectype#subtype) which
are used to perform SMF Record Type matching for input record filtering.

A description of each of the different SMF record type identification values is documented in SMF Type
Values under "Record Filtering".

All SMF record types contain an SMF record type field zRTY and some also contain a sub-type field zSTY
in the record header. If an SMF record contains a match on any of the supplied SMF record type
identification values, then SMF Record Type matching will return a true result (1). Otherwise a false result
(0) is returned.

SMF Record Type matching is one of the content match criteria for SMF record filtering. If a true result is
returned, then the SMF record will be passed for REPORT processing only if at least one of the following is
true:

No other SMF content match criteria is specified.1.
The SMF content match criteria logical operation is "OR". (see SMFLOGIC).2.
All other specified SMF content match criteria each return a true result. (see SMFFIND,
SMFJOBNAME, SMFSID and SMFUSERID)

3.

Note that TYPES and other content match criterion are invalid if a filter expression is provided via the
FILTER section of the report definition. If both a FILTER section and a TYPES specification exists, then
error message ERR066E is returned.

In the following example, a true result will be returned if the input SMF record type (zRTY field value) is 42
(any sub-type), or if the SMF record type is 119 with sub-type (zSTY field value) of 21.

TYPES(42, 119#21)

Note that all values specified in the SMFTYPES option will be overridden by types values entered as
parameters via the following:

The SMF Report panel♦
The TYPES operand of the REPORT primary command♦

REPORT Definition OPTIONS

2024/09/02 11:04:59 FileKit REPORT Utility 191

SMFUSERID(username, ...)
Applicable only to SMF type input (not DB2 or SDE), SMFUSERID specifies one or more comma separated
user name search values (username) which are used to perform SMF Record User Name matching for
input record filtering.

A username value may be specified as an unquoted, quoted or character literal string and may contain
one or more wildcard characters as described by search values under "Record Filtering". Unless username
contains an asterisk ("*") wildcard, which represents zero or more occurrences of any character, then the
username value will be truncated or padded with blanks to a length of 8 characters. Furthermore, if no
percent ("%") or asterisk ("*") wildcards are specified and username is an unquoted or quoted string, then
all alpha characters in the string will be upper cased.

A number of SMF record types contain a user name field zUserId at a fixed location within the record data.
This fixed position may be different for each of the SMF record types. The following SMF record types are
those that contain a zUserId field:

004
005
006
010

014
015
017
018

020
025
026

030
032
034

035
036
040

042
060
061

062
063
064

065
066
067

068
069
080

110
118
119

If an SMF record zUserId field contains a match on any of the supplied username values, then a true result
(1) will be returned for SMFUSERID matching. Otherwise, if no match is found for any of the supplied
username values or the SMF record does not contain a zUserId field, then a false result (0) is returned.

SMF Record User Name matching is one of the content match criteria for SMF record filtering. If a true
result is returned, then the SMF record will be passed for REPORT processing only if at least one of the
following is true:

No other SMF content match criteria is specified.1.
The SMF content match criteria logical operation is "OR". (see SMFLOGIC).2.
All other specified SMF content match criteria each return a true result. (see SMFFIND,
SMFJOBNAME, SMFSID and SMFTYPES)

3.

Note that SMF Record User Name matching and other content match criterion are invalid if a filter
expression is provided via the FILTER section of the report definition. If both a FILTER section and a user
name specification exists, then error message ERR066E is returned.

In the following example, a true result will be returned if the SMF record has a zUserId field that contains a
user name of any length up to a maximum of 8 characters ending with 1, or a user name beginning with
"ABC" followed by any single character followed by "DEFG".

SMFUSERID(*1, ABC%DEFG)

User names specified in the SMFUSERID option will be overridden by user name values entered as
parameters via the following:

The SMF Report panel♦
The USER operand of the REPORT primary command♦

SPLITBREAK[(YES|NO)]
Applicable only to printed report output and ignored for CSV, JSON and XML output, SPLITBREAK
specifies whether or not the printed lines belonging to a control break may be split over a new page.

SPLITBREAK(NO) is default and so the REPORT utility will determine whether or not the break lines that
follow a control group all fit in the lines remaining on the current page. If not, the lines remaining on the
page are left blank and the break lines are printed on a new page.

SPLITBREAK(YES) will allow the control break lines to span more than 1 page.

If a block of control break lines are split over 2 pages, then any re-print of break HEADING lines that would
occur as a result of a break definition REPEAT option, will be suppressed during break line printing.
Heading lines will still be re-printed if the page throw occurs during detail line printing.

STATS[(YES|NO)]
Applicable only to printed report output and ignored for CSV, JSON and XML output, STATS specifies
whether or not generation of statistics values (totals, averages, etc.) will occur for statistics columns.

STATS(YES) is default and so statistics values will be generated for the statistics columns as appropriate.

Statistics columns are named in the STATISTICS section or otherwise identified as columns of numeric
data type defined in the COLUMNS section. By default, statistics values will be generated for each statistics
column and displayed beneath the column's values at each control break and at the end of the report.

Note that STATS(NO) will not suppress the text printed for TOTAL, AVERAGE, NZAVERAGE, MAXIMUM,
MINIMUM and NZMINIMUM break lines specified in a BREAK section.

The report line generated to underline statistics columns and so separate the column values from the
statistics values, will be empty. If required, this blank line may be suppressed using option BRKULINE(NO).

REPORT Definition OPTIONS

2024/09/02 11:04:59 FileKit REPORT Utility 192

SUMMARY[(YES|NO)]
Applicable only to printed report output and ignored for CSV, JSON and XML output, SUMMARY specifies
whether or not a summary report is to be generated.
SUMMARY(NO) is deafult and so a full report of the detail lines is produced.

Option SUMMARY(YES) is similar to option DETAIL(0) in that all report detail lines will be suppressed but
all page headings, column headings, break lines and page footings are unaffected and will be printed as
normal. However, unlike DETAIL(0), SUMMARY(YES) will set SPACEBEFORE(0) and SPACEAFTER(0)
for all BREAK section break definitions, overriding any explicit specification. Similarly, the REPEAT option to
output break HEADING lines at the start of each new page is ignored for summary output.

Therefore, no blank lines will appear before or after each block of break lines in the printed output unless
blank lines are printed as a result of trailing null lines in a break FOOTING specification. e.g.
FO0TING("End of statistics for:" RESNAME <NEWLINE>)

TAGLEN(int)
Applicable only to JSON and XML output and ignored for CSV and printed report output, TAGLEN limits the
XML tag or JSON name generated from the COLUMN definition header to a maximum of length int
characters. The int value may be between 1 and 235.

By default, the REPORT utility restricts the length of XML tag names and JSON names (in a name/value
pair) to a maximum of 235 characters, i.e. TAGLEN(235).

TOTALS[(YES|NO)] | NOTOTALS
Applicable only to printed report output and ignored for CSV, JSON and XML output, TOTALS specifies
whether or not generated TOTAL break lines are to be automatically generated for control breaks, including
the default end-of-report #GRAND totals control break.

TOTALS(YES) is default and is equivalent to specifying both options BRKTOTALS(YES) and
GRANDTOTAL(YES). TOTALS(NO) or NOTOTALS is equivalent to specifying both options
BRKTOTALS(NO) and GRANDTOTAL(NO).

XMLINDENT[(YES|NO)]
Applicable only to XML report output, XMLINDENT specifies whether or not each XML tagged report field
value is to appear on its own line of the XML output.

XMLINDENT(NO) is the default so that all XML tagged values belonging to the same report detail line will
be written to the same line of the XML output.

<?xml version="1.0"?>

<INPUT>
 <FileKit_Report> <NAME>Daniel Ricciardo</NAME> <COUNTRY>Australia</COUNTRY> </FileKit_Report>
 <FileKit_Report> <NAME>Lando Norris</NAME> <COUNTRY>United Kingdom</COUNTRY> </FileKit_Report>
</INPUT>

XMLINDENT(YES) indicates that all XML tagged values belonging to the same report detail line will be
written to concurrent lines of the XML output and indented within the report line tags.

<?xml version="1.0"?>

<INPUT>
 <FileKit_Report>
 <NAME>Daniel Ricciardo</NAME>
 <COUNTRY>Australia</COUNTRY>
 </FileKit_Report>
 <FileKit_Report>
 <NAME>Lando Norris</NAME>
 <COUNTRY>United Kingdom</COUNTRY>
 </FileKit_Report>
</INPUT>

XMLLITERALS[(YES|NO)]
Applicable only to XML report output, XMLLITERALS specifies whether or not literal values specified in the
in the COLUMNS section are included as the tagged values in the XML output.
XMLLITERALS(NO) is default and will exclude column field literal values from the XML output.

Note that the column entry header value is used as the XML tag name which is the same as the literal value
by default.

XMLSTRIPALL[(YES|NO)]
Applicable only to XML report output, XMLSTRIPALL specifies whether or not leading and trailing blanks
are to be stripped from all values.

XMLSTRIPALL(NO) is default and so values are not stripped of leading and trailing blanks. Each value will
be of a fixed length equal to the specified (or default) field width.

XMLSTRIPALL(YES) indicates that all XML values are to be stripped of leading and trailing blanks.

REPORT Definition OPTIONS

2024/09/02 11:04:59 FileKit REPORT Utility 193

OUTPUT

Overview:
The OUTPUT section specifies the destination of the generated report.

The report destination specified by the OUTPUT section may be a new or existing data set, library member or HFS/ZFS file.
To prevent truncation of record data, the defined LRECL of an existing data set or library member should be large enough to
contain the longest output record generated by the REPORT utility.

The REPORT utility identifies the specified output data object as being either a valid DD name, a DSN with or without a
library member reference, or an HFS/ZFS file id path. If the output data object already exists, then its contents will be
replaced with the generated report output.

When the output data object is a new sequential or library data set, then the REPORT utility will catalog the new DSN with
attributes: LRECL=16384, RECFM=VB, BLKSIZE=0 (SMS system determined blocksize) and SPACE=(TRK,(5,5)). UNIT,
MGMTCLAS, DATACLAS and STORCLAS attributes will also be set if default values have been set in the FileKit System
INI file.

When the output data object is a new HFS/ZFS file, then the REPORT utility will allocate the specified file path with
attributes: PATHDISP=(KEEP,KEEP) and PATHMODE=(SIRWXU,SIRWXG,SIROTH).

The REPORT utility output data object is determined in the following order of precedence:

If the REPORT utility is executed using the REPORT primary command and the OUTDD (or OUTPUTDD) operand
is specified, then output is to the DD name specified by operand OUTDD.

1.

If DD name SDEOUT is allocated, DD=SDEOUT2.

The data object (ddout, dsname or fileid) specified by the OUTPUT section of the report definition.3.

If executing in batch, DD=SDEPRINT. (Allocation of SDEPRINT is mandatory for batch execution.)4.

For FileKit foreground execution only, an unsaved, in-storage file assigned a DSN
"userpfx.REPORT.Dyyyyddd.Thhmmss.TXT", where userpfx is the DSN prefix associated with the current FileKit
user and yyyyddd and hhmmss is the current Julian date and time respectively. The in-storage data is displayed in
a Text Editor view and may be saved to a specific DSN using "SAVE dataset-name".

5.

Therefore, output report destination specified in the OUTPUT section is ignored if either the REPORT primary command is
executed with operand OUTDD (or OUTPUTDD), or DD name SDEOUT is allocated.

Examples:

Example 1 - DD Output:

OUTPUT:
 DD=SMFCSV

The above example specifies that the report output is to be written to the data set, library member or HFS/ZFS file allocated
to DD name SMFCSV.

Example 2 - Data Set Output:

OUTPUT:
 CBL.SMFRACF.REPORT.D2021132

The above example specifies that the report output is to be written to the new or already cataloged data set
"CBL.SMFRACF.REPORT.D2021132".

Example 3 - HFS/ZFS File Output:

OUTPUT:
 "/XS01/home/john/TCPIP-Connect-Report.txt"

The above example specifies that the report output is to be written to the new or existing HFS/ZFS file
"TCPIP-Connect-Report.txt" in directory "/XS01/home/john".

REPORT Definition OUTPUT

2024/09/02 11:04:59 FileKit REPORT Utility 194

Syntax:

 >>-- OUTPUT: --------------- | Output Definition | -------------------------><

Output Definition:

 +-- DD= --+
 | |
 >>---+---------+-- ddout -----------+--><
 | |
 +------------ dsname ----------+
 +----------- 'dsname' ---------+
 +----------- "dsname" ---------+
 | |
 +------------ fileid ----------+
 +----------- 'fileid' ---------+
 +----------- "fileid" ---------+

Parameters:

[DD=]ddout
Specifies the DD name (ddout) that is allocated to the data set, library member or HFS/ZFS file to which the
generated output report will be written.

dsname | 'dsname' | "dsname"
Specifies an unquoted or quoted data set name or library name and member (dsname) to which the generated
output report will be written.

fileid | 'fileid' | "fileid"
Specifies an unquoted or quoted HFS/ZFS file path to which the generated output report will be written.

REPORT Definition OUTPUT

2024/09/02 11:04:59 FileKit REPORT Utility 195

REPEAT

Overview:
The REPEAT section specifies the record-type mapping(s) of the records (or record segments) that trigger output of a report
detail line.

Every input record is assigned a named record mapping (record-type). The record-type is selected from the available
record-types defined in the SDE Data Editor structure (SDO) based on USE WHEN selection criteria or else the DEFAULT
record-type. The structure is either provided by the user on input or automatically generated by the REPORT utility for SMF
record or DB2 table processing.

If input records are segmented, then each segment of an input record is mapped by a separate record-type mapping. The
record-type used to map a segment is determined based on USE WHEN selection criteria applied to data in the segment or
in a previous segment. The first segment of a segmented record is mapped by a primary (or base) record-type. All other
segments are mapped by a secondary record-type. For the purpose of terminology, a non-segmented input record or DB2
table row may be considered to be mapped entirely by a primary record-type.

By default, the REPORT utility will trigger output of a new detail line immediately upon input of the second or subsequent
record, record segment or DB2 table row to be mapped by a primary record-type. The values of fields used in the report
output record will reflect the values obtained from the previous input record, record segments or DB2 table row.

Depending on the structure of input record data, it is possible for the value of an input field to be updated more than once
between 2 occurrences of a report output record. Since the output record reflects the current value of an input field, the
report would not include all the other values assigned to the field since the last output record was processed. To ovecome
this, a REPEAT section should be specified to override the REPORT utility default.

Instances where field values may not be reported and so a REPEAT section is necessary, are as follows:

Input field values are obtained from multiple records of different primary record-types. In this case, output should
be delayed until a record of a specific record-type is read.

1.

Input field values are obtained from a potentially repeating segment of secondary record-type within the same
record. In this case, output should be forced following input of each segment of the repeating secondary
record-type.

2.

Examples:

Example 1 - SMF Record Input with Repeating Secondary Segment:

COLUMNS:
 SMF030_Identification.zJOBNAME ('Job|Name' CENTRE)
 SMF030_Identification.zSIT ('Job|Start')
 '|' ('')
 SMF030_EXCP.zEXP.zDDN ('DDName')
 SMF030_EXCP.zEXP.zBLK ('EXCP|Blocks' RIGHT) 8 RIGHT
 SMF030_EXCP.zEXP.zBSZ.zBSZLarge ('Largest|Block' RIGHT) 6 RIGHT
 SMF030_EXCP.zEXP.zCUA ('Dev#')

REPEAT:
 SMF030_EXCP

In the above example, a number of record-types are used to map the individual sections (segments) of input SMF type 30
records.

For each SMF 30 record, there are potentially many occurrences of the EXCP segments mapped by secondary record-type
"SMF030_EXCP". Therefore, in order to output a report detail line containing the DDname (zDDN), Number of EXCP blocks
(zBLK), largest block (zBSZLarge) and device number (zCUA) recorded for each occurrence of an EXCP segment, the
REPEAT section is used to trigger a new report line for each segment with record-type "SMF030_EXCP".

The "zJOBNAME" and "zSIT" columns are defined in the primary segment record-type. These columns will contain the
same values in each report line generated from a single SMF type 30 record. See the RESET section for description on
resetting non-repeated input field values to null.

REPORT Definition REPEAT

2024/09/02 11:04:59 FileKit REPORT Utility 196

Example 2 - Multiple Non-Segmented Records:

COLUMNS:
 TRACK.TRACK-NUM 'Track|Number' RIGHT
 ARTIST.ARTIST 'Artist' 30
 ALBUM.ALBUM 'Album' 30
 TRACK.NAME 'Track|Name' 30
 TRACK.TOTAL-TIME 'Track|Duration'
 TRACK.RELEASE-YYYY 'Year|Released' RIGHT

REPEAT:
 TRACK

In the above example, the input records are arranged in a hierarchy so that a record for a recording artist (mapped by
record-type "ARTIST") is followed by one or more records, each detailing an album recorded by that artist (mapped by
record-type "ALBUM"). Each ALBUM record is itself followed by one or more records, each detailing a track on the album
(mapped by record-type "TRACK").

Specification of the "TRACK" record-type in the REPEAT: section will delay output of a report detail line until after a
"TRACK" record has been read and processed. The name of the artist (ARTIST) and the name of the album (ALBUM) are
set from the last ARTIST and ALBUM records to have been processed and so will be repeated for all tracks in the report
output that belong to the same album.

Syntax:

 (1) +----------------------------------+
 v |
 >>-- REPEAT: ---------------+--- record-type ---+-----------+--+-------------><
 | |
 +-- INPut --+

(1) Each record-type must be specified on a separate control statement.

Parameters:

record-type
Identifies the type of input record or record segment that will trigger output of a new report detail line.

A record-type is the name of a mapping structure used to map an input record (or record segment). The
record-type must match the first qualifier of one of the input-field identifiers used to define a column or work field in
the COLUMNS or REQUIRED sections respectively.

One or more record-type names may be specified, each on separate control statements following the REPEAT
section header in the report definition input.

INPUT
Applicable only to input records that are segmented (e.g. SMF type input), INPUT indicates that the specified
segment record-type is repeating but must not trigger output of a new report detail line.

Where a secondary segment record-type repeats within a record but is not selected as one of the segments for
which an output detail line is written, then field values are obtained from the first occurrence of the repeating
segment only. The INPUT operand allows fields in a repeating segment to be re-evaluated for each occurrence of
the segment type, but without triggering output of a new report detail line. Therefore, the field values of the
repeating segment when a report detail line is written, will be those obtained from the last occurrence of a segment
encountered before the detail line is triggered.

REPORT Definition REPEAT

2024/09/02 11:04:59 FileKit REPORT Utility 197

REQUIRED

Overview:
The REQUIRED section is used to identify additional input record or computed field names from which values will be
extracted.

By default, the REPORT Utility will only extract values for record input fields that have been specified as column fieldname
identifier in a COLUMNS section column definition. However, there may be instances where an input record field or
computed field value is required for report processing but is not to be included in the report detail lines. In these cases, the
input record field or compute field must be defined in the REQUIRED section. The values of input record fields that are not
identified in either the COLUMNS or REQUIRED sections will not be extracted from the input records.

If an input record field or computed field is already used as a column definition filedname identifier, then it does not need to
be specified in the REQUIRED section.

The following report definition sections may reference input record fields and computed fields that are not necessarily
identified as a column definition source:

BREAK The fieldname for which a change in value will trigger a control break in the printed report.
BREAK
FOOT
HEAD

As a print expression element. An input record field or a compute field may be specified to
represent a variable fragment of text in report page headings, page footings and control break
lines.

COMPUTE As a variable in a REXX expression. Specified as input-field, the input field value may be used to
resolve the value of a compute-field

SORT The fieldname on which output report detail lines will be sorted.

Note that, where a computed field is referenced in one of these sections but not defined in either of the COLUMNS or
REQUIRED sections, then a definition for the compute field with default width, data-type and alignment values will be
generated automatically in the REQUIRED section.

Examples:

REQUIRED:
 SMF119#02_TCP_Statistics.zTME 10
 SMF119#02_TCP_Connection_Termination.zConnectStart
 SMF119#02_TCP_Connection_Termination.zConnectEnd

HEAD:
 "TCP/IP Connections Reported on:" zTME

COMPUTE:
 DURATION = Secs2Time(Time2Secs(zConnectEnd) - Time2Secs(zConnectStart))

COLUMNS:
 SMF119#02_TCP_Connection_Termination.zRName ('RESOURCE')
 :DURATION ('CONNECTION|DURATION|HHH:MM:SS.SS' RIGHT) 12 RIGHT

The above example indicates to the REPORT utility that in addition to input record field "zRName", which is included as a
column in report detail lines, it must also extract the values for input record fields "zTME", "zConnectStart" and
"zConnectEnd".

The 16-character timestamp value in "zTME" is truncated at 10 characters so that only the date portion is extracted (e.g.
2020/01/23). The 10 character value of "zTME", extracted from the first output record to be processed on a new printed
report page, will be substituted in place of "zTME" in the page heading.

For each output record, the prevailing values for "zConnectStart" and "zConnectEnd" are used in the COMPUTE section to
resolve the value of compute-field "DURATION". This is an elapsed time (format "hh:mm:ss.ttt" which is reported as a
column value in in the detail line.

REPORT Definition REQUIRED

2024/09/02 11:04:59 FileKit REPORT Utility 198

Syntax:

 (1) +---+
 v |
 >>-- REQUIRED: ---------+--- | Required Object Definition | ------+----------><

(1) Required Object definitions must be specified on separate control statements.

Required Object Definition:

 >>--+-- fieldname -----+-------------+------+--------------------------------><
 | | | |
 | +--| options |--+ |
 | |
 +-- record-type ------------------------+

fieldname:

 |--+-- record-type.input-field -----+---------------------------------------|
 | |
 +-- input-field -----------------+
 | |
 +-- :compute-field --------------+

options:

 |--+---------+--+----------+--+--------------+--+----------------+---------->
 | | | | | | | |
 +- width -+ +- Left ---+ +- CHARacter --+ +- NORESET ------+
 | | | |
 +- Right --+ +- NUMeric ----+
 | | | |
 +- Centre -+ +- TIME -------+
 +- Center -+

 >--+---------+--+--------------------------------+--------------------------|
 | | | |
 +- STRIP -+ +- SUBSTR(start -+--------+-) -+
 | |
 +- ,len -+

Synonyms:

REQUIRED REQUIRE

Parameters:

fieldname
A fieldname identifies the name of an input record field or computed field that may be referenced in other report
sections and from which values will be extracted.

Field values may change after processing the current input record or record segment. Therefore, fieldname may
have a different value in each report output record used to generate the report.

A fieldname must be one of the following field types:

input-field
This fieldname format identifies a field whose values are extracted from within the input records.

Use of input-field without a preceding record-type specification applies only when only one record-type
structure exists for mapping the input record or input is a DB2 table. In these cases input-field should be
used.

See description of input record fields for details on input-field specification.

REPORT Definition REQUIRED

2024/09/02 11:04:59 FileKit REPORT Utility 199

record-type.input-field
Like input-field alone, this fieldname format identifies a field within the input records.

Where the FileKit SDO structure associated with the input records contains more than one record-type
definition, then the record-type name must be included before the input-field specification to identify the
record-type mapping to which the field belongs. The record-type and input-field name specifications must
be separated by a dot/period (".") character.

Note that when reporting on SMF records, the REPORT utility will dynamically generate an SDO structure
to map the required SMF record types. This structure will always contain more than one record-type and
so a record-type name is mandatory on an SMF input record field specification. Furthermore, the
record-type names specified in the COLUMNS and REQUIRED sections of an SMF report definition input,
are used by the REPORT utility to identify which SMF record-type mappings are required to build the
dynamic SDO structure. See publication "FileKit SMF Utilities" for SMF record-type and field names.

Use of record-type is unnecessary where the SDO structure contains only one record-type definition.

:compute-field
This fieldname format identifies a field whose value is computed using REXX statements specified in the
COMPUTE section.

To distinguish it from an input-field, a compute-field must be specified with a colon (":") symbol prefix. This
prefix character is used only to identify the field name as a compute-field and is not part of the
compute-field name itself. e.g. A column name referenced by a computed field name "MyValue" is
identified using ":MyValue" in the required field definition control statement.

See description of computed fields for details on compute-field specification.

record-type
Applicable only to SMF record reporting, record-type specifically identifies the name of a record segment
record-type definition found in the general SDO structure that maps all segments of a particular SMF record type or
sub-type. See publication "FileKit SMF Utilities" for the segment record-type names of all supported SMF record
types.

For efficient storage usage and improved execution time, the REPORT utility will dynamically generate an SDO
structure containing only the record-type definitions it needs to map the SMF record segments referenced within
the report definition.

Specification of an SMF record field name in either the COLUMNS: or REQUIRED: section must reference the
segment record-type mapping to which the field belongs. Therefore, it is not usually necessary to specify
record-type alone in the REQUIRED: section.

width
Specifies the field data width. Input record field values will be truncated or padded to this width accordingly.

The default width is the maximum number of characters that would be required to display the widest value
represented by the input field definition. For example, if fieldname represents an unsigned, 2-byte integer field in
the input data, the default width is 5 because the highest value represented by input-field is 65535.

For column definitions identified by a compute-field, the default width is either 9, or a value greater than 9 and
equal to the largest width value specified for the same compute-field anywhere within the report definition.

CENTRE|CENTER|LEFT|RIGHT
Specifies the data alignment of the field value. The value text may be left adjusted, right adjusted or centralised
within the defined data width (width).

For column data definitions of NUMERIC data type, the default column data value text alignment is RIGHT. For all
other types of column definition, the default text alignment is LEFT.

Aligned values, padded or truncated to the data width (width) will be used in place of the field's reference within a
printed report heading, footing or control break record, unless data alignment is specified for the field within the
HEAD, FOOT or BREAK section definition.

CHARACTER|NUMERIC|TIME
Specifies the data type of the values assigned to fieldname.

For an input-field, the data type is automatically determined based on the field mapping information provided by the
record-type structure. However, you may wish to override this. For example, if an input-field has a source data type
of CHARACTER but contains numeric values, you may wish to set data type "NUMERIC" so that the field is
included as one of those eligible for statistics (totals, averages, etc.) generation.

However, for a compute-field, there is no defined data type on which the REPORT utility can base a default
assignment. Therefore, it assigns a data type based on the data type of the field's value at the time the first report
detail line is written. This is determined as follows:

If the value is in a time format then the fieldname is "TIME".
The REPORT utility identifies a time format as n:n:n.n, n:n:n, n:n or n:n.n where n represents 1 or more
decimal digits).

1.

If the value is a REXX numeric value then the fieldname is "NUMERIC".2.
Otherwise the fieldname is "CHARACTER".3.

REPORT Definition REQUIRED

2024/09/02 11:04:59 FileKit REPORT Utility 200

This method is a best effort and may not return the desired result. Therefore, it is recommended that a specific
data type is provided for a compute-field definition.

The data type of a built-in-field is assigned internally by the REPORT utility and should not require a data type
specification.

NORESET
Applicable only to input-field column defintions, NORESET will exclude the field from value reset processing.

Value reset processing occurs following output of a report detail line at which point the REPORT utility sets a null
value to each input-field specified in the COLUMN: or REQUIRED: sections if either of the following is true:

No REPEAT: section has been specified.◊
Both REPEAT: and RESET: sections have been specified, and output has been triggered by input of a
record (or record-segment) with a record-type mapping that matches one specified in the RESET: section.

◊

If NORESET is specified on an input-field definition in the COLUMN: or REQUIRED: section, then this field's
values are never reset. A field in the REQUIRED: section is not included in the report detail line output, however
NORESET may be useful if the value is referenced as a REXX variable within the COMPUTE: section.

STRIP
Specifies that leading and trailing blanks that potentially exist in the field value, are to be stripped.

SUBSTR(start[,len])
Used when the required field values are a sub-string of the input values. SUBSTR specifies start, the position
within the field value of the first output field character, and optionally len, the number of characters in the output
field value.

If len is not specified, then the substring value will begin at the start character position and end at the last character
in the input value. If len extends beyond the last character of the input value, then the output value will be padded
with blanks. The substring value will ultimately be aligned according to the specified or default data alignement to a
length specified by width.

Note that, if STRIP has been specified, then SUBSTR will operate on the stripped input value.

REPORT Definition REQUIRED

2024/09/02 11:04:59 FileKit REPORT Utility 201

RESET

Overview:
The RESET section is only applicable if a REPEAT section also exists. Without a REPEAT section, any entries specified in
a RESET section will be ignored.

The RESET section specifies the names of record (or record segment) record-type mapping(s) in the REPEAT section that,
having triggered an output record, will also trigger a reset of all input-field values. An input-field is identified via the
COLUMNS or REQUIRED section.

By default, when an output record is triggered by a match on a REPEAT section record-type name, input-field values are
not reset to null. Therefore, a column's value will be repeated in the next output record unless updated by input of another
record or segment which is assigned the same record-type to which the column field belongs.

Note that if no REPEAT section exists, output of the current report line will occur immediately following input of the next data
record (or the next data record's primary segment if input records are segmented). In this case, all input-field values are
automatically reset to null following output of the current report line and before then being re-assigned values from the new
input record.

An individual input-field may be excluded from any reset processing by specifying parameter NORESET on its definition in
the COLUMNS: or REQUIRED: sections.

Examples:

COLUMNS:
 SMF030_Identification.zJOBNAME ('Job|Name' CENTRE)
 '|' ('')
 SMF030_EXCP.zEXP.zDDN ('DDName')
 SMF030_EXCP.zEXP.zBLK ('EXCP|Blocks')

REPEAT:
 SMF030_EXCP

RESET:
 SMF030_EXCP

In the above example, a number of record-types are used to map the individual sections (segments) of input SMF type 30
records.

In each SMF 30 record there is an identification segment of primary record-type "SMF030_Identification" for which there are
potentially many occurrences of the EXCP segment mapped by secondary record-type "SMF030_EXCP". Reference to
"SMF030_EXCP" in the REPEAT section ensures that a new report record is generated for each EXCP segment.

The "zJOBNAME" column is defined in the primary segment record-type. Normally, this column would contain the same
values in each report line generated from the same input SMF type 30 record. However, reference to "SMF030_EXCP" in
the RESET section means that all input field values are reset following output of each report line. Therefore, the
"zJOBNAME" column in the first report line generated for an SMF type 30 record will contain a non-null value but will
contain null values in all subsequent report lines for the same SMF record.

Syntax:

 (1) +-------------------+
 v |
 >>-- RESET: ----------------+--- record-type ---+----------------------------><

(1) Each record-type must be specified on a separate control statement.

Parameters:

record-type
Identifies the type of input record or record segment that having triggered output of a new report detail line, will also
trigger reset of all input filed values to null.

A record-type is the name of a mapping structure used to map an input record (or record segment). To have any
affect, the record-type name must match a record-type name specifeid in the REPEAT section.

One or more record-type names may be specified, each on separate control statements following the RESET
section header in the report definition input.

REPORT Definition RESET

2024/09/02 11:04:59 FileKit REPORT Utility 202

SORT

Overview:
Presence of SORT section control statements indicate that the report records are to be sorted.

A number of sort control statements may be specified, each identifying a sort key field which is based on a defined
input-field, built-in-field or compute-field. The order in which the control statements are specified dictates the hierarchy of the
sort fields.

If no sorting is performed, then by default records are processed in the order they are read from the input data set.

If the REPORT utility is executed in a batch, JCL DD statements must exist for DDnames SYSIN, SYSOUT, SORTIN and
SORTOUT. When executed in TSO/E foreground, the utility will dynamically allocate these DDnames to temporary data
sets.

When sorting is required, the REPORT utility will:

Write interim records to DD SORTIN. These records contain the output report record data and so field values are in
their printable character representation.

1.

Execute use the standard SORT utility installed on the local z/OS host to write sorted records to DD SORTOUT.2.

Process the sorted records from DD SORTOUT to genertae the final report output.3.

In addition to the sort field name, the SORT control statement allows specification of the following optional parameters:

The sort order (ascending or descending).1.

The width of the sort field value. For use where the sort field occupies only the first characters of the specified
column or required field for the specified width. Only valid for left adjusted values (e.g. character strings or time
stamps).

2.

The sort field data format as supported by the local SORT utility. "CSF", "SFF", "UFF" and "CH" are the data
formats supported by DFSORT and SYNCSORT and applicable to report record fields. By default, the REPORT
utility will select the appropraite sort format for the type of data containined in the sort field.

3.

Examples:

Example 1 - Sort by a Single Field:

COLUMNS:
 TRACK.TRACK-NUM 'Track|Number' RIGHT
 ARTIST.ARTIST 'Artist' 30
 ALBUM.ALBUM 'Album' 30
 TRACK.NAME 'Track|Name' 30

SORT:
 ARTIST.ARTIST (DESCENDING)

In the above example, record output lines will be sorted in descending order of artist name.

Example 2 - Sort by Multiple Fields:

COLUMNS:
 SMF119#02_TCP_Connection_Termination.zRName 'Resource'
 SMF119#02_TCP_Connection_Termination.zConnectStart 'Connection|Start'
 SMF119#02_TCP_Connection_Termination.zConnectEnd 'Connection|End')
 :DURATION 'Connection|Duration' 12 RIGHT
 SMF119#02_TCP_Connection_Termination.zInBytes 'Inbound|Bytes'
 SMF119#02_TCP_Connection_Termination.zOutBytes 'Outbound|Bytes'
 SMF119#02_TCP_Connection_Termination.zTermCode 'Termination|Description'

SORT:
 SMF119#02_TCP_Connection_Termination.zRName
 SMF119#02_TCP_Connection_Termination.zConnectStart 10
 :DURATION (DESCENDING)

In the above example, report records contain details of TCP/IP connections obtained from SMF record type 119 sub-type 2
input records.

A hierarchy of SORT field definitions are used to sort the report records. The records are sorted first by TCP/IP resource
name ("zRName") in ascending alphabetical order.

REPORT Definition SORT

2024/09/02 11:04:59 FileKit REPORT Utility 203

The secondary sort field ("zConnect") is a timestamp date and time of length 22 and format "yyyy/mm/dd hh:MM:ss.tt".
However, only the first 10 characters are used as the sort field and so, for each resource name, the records are ordered by
ascending order of date.

The final sort field (":DURATION") is a computed field containing the time elapsed for the connection in the format
"hhh:MM:ss.tt". For each resource name connection on the same date, the report records are sorted by descending order of
duration.

Syntax:

 (1) +---+
 v |
 >>-- SORT: -------------+--- | Sort Field Definition | -----------+----------><

(1) Sort Field definitions must be specified on separate control statements.

Sort Field Definition:

 +-- (Ascending) ---+
 | |
 >>-- fieldname --+--------------------+--+-----------------+--+------------+-><
 | | | | | |
 +-- (Descending) --+ +---| options |---+ +-- format --+

options:

 |--+---------+-+----------+-+---------+-+--------------------------------+--|
 | | | | | | | |
 +- width -+ +- Left ---+ +- STRIP -+ +- SUBSTR(start -+--------+-) -+
 | | | |
 +- Right --+ +- ,len -+
 | |
 +- Centre -+
 +- Center -+

Parameters:

fieldname
Identifies the field on which the sort key field is based. Values from this field will be used to sort the output report
records.

The fieldname is an input-field, compute-field or built-in-field name specification.

(ASCENDING | DESCENDING)
Specified in parentheses, ASCENDING or DESCENDING defines the order in which values in the key field are
sorted.

Default is ASCENDING.

width
Specifies the width of the sort key field. If width is greater than the default field width of fieldname, then blank
padding will occur on the obtained field value. If it is less than this field width, then truncation of the fieldname value
will occur.

The following example shows how report records may be grouped for UserIds (length 8), that have the same 4
character prefix and also sorted so that, for each group of UserIds, the login times occur in descending order:

UserId (ASCENDING) 4
LoginTime (DESCENDING)

format
A DFSORT/SYNCSORT data format assigned by the REPORT utility to the fields on which report records are to be
sorted.

Since output report record field values are in a printable character representation, the only sort data formats that
are appliacble to these fields are CH, CSF (or FS), SFF and UFF.

By default, the REPORT utility will assign a sort data format based on field's data type within the input source
record as follows:

REPORT Definition SORT

2024/09/02 11:04:59 FileKit REPORT Utility 204

Data Type Data
Format

Description

Time
Date
TimeStamp

UFF Unsigned Free Form numeric format extracts decimal digits (0-9) from right to
left anywhere in the field to form a positive number. Characters other than 0-9
are ignored.

Numeric SFF Signed Free Form numeric format extracts decimal digits (0-9) from right to left
anywhere in the field to form a positive or negative number. If minus ("-") is
found anywhere in the field, the number is treated as negative, otherwise it is
treated as positive. Characters other than 0-9 are ignored.

Character CH CHaracter EBCDIC unsigned.

The format may be set to override one of these defaults where local knowledge of the data dicatates a more
appropriate sort data format. For example, it is possible that a character data type sort field contains only signed
integer values in which case the field values should be right aligned and data format "CSF" used as the sort data
format.

CENTRE | CENTER | LEFT | RIGHT
Specifies the data alignment of the sort key value within the sort key field. The sort value may be left adjusted, right
adjusted or centralised within the defined break key field width (width).

If fieldname is an input field of numeric data type, then the default sort key value alignment is RIGHT. Otherwise,
the default alignment is LEFT.

Aligned values, padded or truncated to the data width (width), are used as the sort key.

STRIP
Specifies that leading and trailing blanks that potentially exist in the value obtained from fieldname are to be
stripped prior to being aligned in the sort key field.

Note that, if SUBSTR is also used, then the strip of leading and trailing blanks will occur on the substring value
obtained from fieldname.

SUBSTR(start[,len])
Specifies that the sort key value is a substring of the value obtained from fieldname.

A start position (start) and optional length value (len) is specified in parentheses "()" immediately following the
SUBSTR keyword. The start value is the position in the field of the first character obtained from fieldname, and len
is the length of data to be obtained.

Note that, if len is not specified, then the substring value will begin at the start character position and end at the last
character of the field value. If len extends beyond the last character of the fieldname value, then the value will be
padded with blanks.

If both SUBSTR and STRIP are used, then the SUBSTR operation will occur first so that leading and trailing blank
characters will be stripped fron the sub-string value and not from the original fieldname source field value.

Once SUBSTR and/or STRIP has been performed on the fieldname value, it is saved in the sort key field using the
key field alignment.

In the following example, DateAdded is a left adjusted input timestamp field of length 28 in the format
yyyy-mm-dd hh:mm:ss.nnn. To sort the report records by DateAdded, first in ascending order of date and then
in descending order of time, then the SUBSTR option would be used as follows:

DateAdded (ASCENDING) SUBSTR(1,10)
DateAdded (DESCENDING) SUBSTR(12)

REPORT Definition SORT

2024/09/02 11:04:59 FileKit REPORT Utility 205

STATISTICS

Overview:
The STATISTICS section applies only to PRINT type output and specifies one or more column field names for which
statistical values (totals, averages, maximums, etc.) may be maintained and reported.

If no STATISTICS section is defined, then the default statistics columns are those whose values are obtained from either
input-fields or compute-fields that are of a numeric data type. (See parameter NUMERIC in the COLUMNS section for a
description of how the REPORT utiliy determines the data type of a compute-field.)

In a printed report, statistical values appear aligned below each statistics column's values at every control break and/or at
the end of report (#GRAND) break. Unless suppressed, statistics totals are generated by default for each of these report
breaks. Other statistical values that may be generated are determined by parameters on break definitions in the BREAK
section. Specifically, these are the average value, maximum value, mimimum value, average of non-zero values and
minimum of non-zero values.

Each statistics column definition occupies a single statement of the STATISTICS section and must contain an input-field,
compute-field or built-in-field name specification that exactly matches a column field name identified in the COLUMNS
section.

Examples:

REQUIRED:
 TRACK.TOTAL-TIME

COMPUTE:
 Elapsed = format(TOTAL_TIME/1000,,3)

COLUMNS:
 TRACK.ALBUM
 TRACK.TRACK-NUM 'Track|Number'
 TRACK.NAME 'Track|Name'
 :Elapsed 'Track|Duration|(seconds)'

STATISTICS:
 :Elapsed

SORT:
 TRACK.ALBUM

BREAK:
 TRACK.ALBUM AVERAGE MAXIMUM

In the above example, the column definition for input record field "TRACK-NUM" is of numeric data type. All other column
definitions are of non-numeric data type and so, by default, "TRACK-NUM" would be the only statistics column.

However, the STATISTICS section overrides this default and selects the compute-field "Elapsed" as the only statistics
column. The ":Elapsed" field contains elapsed time values in seconds (format "sssss.ttt").

In addition to the implied #GRAND break which will, by default, output a grand total for "Elapsed" following the last report
record, the BREAK section defines a control break which will occur every time there is a change in the "ALBUM" name.
When this control break is triggered, the average, maximum and total values for "Elapsed" values in the control group will be
displayed in the break lines. (Note that the total is displayed since control break definition parameter "TOTAL" is default.)

Syntax:

 (1) +-----------------+
 v |
 >>-- STATISTICS: -----------+--- fieldname ---+------------------------------><

(1) Each fieldname must be specified on a separate control statement.

Synonyms:

STATISTICS STATS TOTAL TOTALS

REPORT Definition STATISTICS

2024/09/02 11:04:59 FileKit REPORT Utility 206

Parameters:

fieldname
Identifies a field for which statistical values may be generated.

The fieldname is an input-field, compute-field or built-in-field name specification that exactly matches a report
fieldname identified in either the COLUMNS section.

One or more filednames may be specified, each on separate control statements following the STATISTICS section
header in the report definition input.

REPORT Definition STATISTICS

2024/09/02 11:04:59 FileKit REPORT Utility 207

TRANSLATE

Overview:
The TRANSLATE section provides the ability to translate characters in values extracted from all input record fields to other
characters. Use of a compute-field is preferrable to restrict character translation to values in specific input fields.

The TRANSLATE section may be comprised of 2 control statements each containing a quoted string of characters
representing a translate table. The first is the input translate table, the second the output translate table. If no output
translate table is specified, it defaults to null.

A character at a position within the input table string corresponds to a character at the same position in the ouput table
string. If the output table string is null or there is no corresponding position in the output table string (because the length of
the input table string is greater), then the corresponding character is blank (x'40').

If a character in the input field exists in the input table, then it will be translated to the corresponding character in the output
table. Otherwise, the input field character is not translated.

Note that if more than 2 statements are specified containing translate table strings, then the first and last string specified will
be used as the input and output translate tables.

Examples:

COLUMNS:
 SMF014_INPUT_or_RDBACK_Dataset.zJobName 'Job Name'
 SMF014#3_Step_Info.zSPN 'Step Name'
 SMF014#3_Step_Info.zPGN 'PgmName'
 SMF014_INPUT_or_RDBACK_Dataset.SMFTIOE5 'DDName'
 SMF014_INPUT_or_RDBACK_Dataset.DSN 'Dataset Name' 44

TRANSLATE:
 '0004'x
 '.'

The above example reports on SMF type 14 records.

The TRANSLATE section is used to translate any occurrence of the unprintable character x'00' in values extracted from the
input fields to dot/period (".").

Similarly, any occurrence of unprintable character x'04' is translated to a blank character (x'40'). Note that x'04' has no
corresponding character in the output table string and so translates to blank (x'40').

Translation of x'04' is necessary since SMF type 14 records include a dataset name ("DSN") obtained from a JFCB control
block. If input allocation is for a volume table of contents (VTOC) then the JFCB DSN contains 44 unprintable x'04'
characters.

Syntax:

 >>-- TRANSLATE: ---------------- input_table_string ------------------------->

 >---------------------------+-----------------------------+-----------------><
 | |
 (1) +-- output_table_string ------+

(1) The input_table_string and output_table_string must be specified on separate control statements.

Parameters:

input_table_string
Identifies the input translate table string of characters. This may be specified as a quoted character string or a
hexadecimal string. For example, '4B'X.

output_table_string
Identifies the output translate table string of characters. This may be specified as a quoted character string or a
hexadecimal string. Default is a null string and so a character in input_table_string will be translated to blank.

REPORT Definition TRANSLATE

2024/09/02 11:04:59 FileKit REPORT Utility 208

Appendix A. Built-in Fields

The REPORT utility program maintains a number of "built-in" fields. The value assigned to a built-in field is initialised when
the REPORT utility is started and may be updated over the course of the program execution.

The name of a built-in field may be referenced in the REPORT definition input. When an output report line is generated, any
reference to a built-in field will reflect the prevailing value assigned to the field.

Built-in field names always begin with a hash symbol ("#"). The following table provides a brief description of each built-in
field maintained by the FileKit REPORT utility.

Built-in Field Description
#DATAFILE The data set name or DB2 table name containing the input records or DB2 table rows.
#DAYNAME Name of the current day of the week in mixed case. (e.g. "Friday").
#DD The 2-digit day of month number at which program execution started. (e.g. "27".)
#HHMMSS The normal (24-hour clock) time at which program execution started. (Format: 'hh:mm:ss'. e.g.

"23:59:09")
#ITEMS The number of items (detail lines) in the last control group reported following a control break.
#KEY For a KSDS input data set only, the key value in the current input record.
#MM The 2-digit month of year number at which program execution started. (e.g. "01" corresponds to

January.)
#PAGE
#PAGENUM

The current printed report output page number.

#RECLEN The length of the current input record or DB2 table row.
#RECNUM The sequence number of the current input record or DB2 table row.
#RECTYPE The name of the record type mapping (record-type) used to map the record or record segment

currently being processed.
#SEQUENCE The report detail line sequence number. This is equivalent to the total number of items (detail

lines) that have been printed to the report so far. (It is the running total that will be reported as the
#GRAND break #ITEMS value.)

#TIME The civil (12-hour clock) time at which program execution started. (Format: 'hh:mm xx' where 'xx' is
'am' or 'pm'. e.g. "11:59 pm")

#TIME24 The 24-hour clock time (hours and minutes only) at which program execution started. (Format:
'hh:mm'. e.g. "23:59")

#TIMESTMP The date and time at which program execution started. This is equivalent to "#TODAY #TIME24"
(Format: 'YYYY/MM/DD hh:mm'. e.g. "2020/01/27 23:59")

#TODAY The ISO date at which program execution started. (Format: 'YYYY/MM/DD'. e.g. "2020/01/27")
#YYYY The 4-digit year number at which program execution started. (e.g. "2020".)

Built-in Field Descriptions

#DATAFILE
A variable length character field containing the name of the data set or DB2 table (format "owner.name") from
which input data records or table rows are read. The value of this built-in field remains constant throughout the
program execution. The default length of the #DATAFILE built-in field is 44-bytes.

Sample values:

 CBL.SMF.GDG.G8856V00
 DSN8910.EMP

#DAYNAME
A variable length character field containing the mixed case day name on which program execution started. The
maximum length is 9 characters and the value of this built-in field remains constant throughout the program
execution.

Sample values:

 Wednesday
 Sunday

2024/09/02 11:04:59 FileKit REPORT Utility 209

#DD
A 2-byte character field containing the day-of-month number on which program execution started. The value of this
built-in field will contain a leading zero if necessary and will remain constant throughout the program execution.

#HHMMSS
An 8-byte character field containing the 24-hour clock time-of-day (hours, minutes and seconds since midnight) at
which program execution started. The hours, minutes and seconds values are each 2 characters in length with a
leading zero if necessary and are separated by a colon (":") symbol. The value of this built-in field remains constant
throughout the program execution.

Sample values:

 03:46:06
 15:01:55

#ITEMS
For use in BREAK section control statements, the #ITEMS built-in field contains a numeric value equal to the
number of report line items (detail lines) reported in the last control group.

The default length of the #ITEMS value is 9-bytes with non-significant zeroes displayed as blank characters. The
value is updated prior to output of the report control break lines that appear after the control group.

#KEY
Applicable only if input records are read from a VSAM KSDS data set, the #KEY built-in field contains the key
value of the last record read. The value has a length equal to the length of the KSDS cluster key field. The value of
this built-in field is updated following the read of and input record.

#MM
A 2-byte character field containing the month-of-year number in which program execution started. The value of this
built-in field will contain a leading zero if necessary and will remain constant throughout the program execution.

#PAGE
#PAGENUM

A numeric field value equal to the current report page number.

The default length of the #PAGE or #PAGENUM value is 9-bytes with non-significant zeroes displayed as blank
characters. The value is incremented at the start of each new page of the printed report.

#RECLEN
A numeric field value equal to the length of the last input data record or DB2 table row read.

The default length of the #RECLEN value is 9-bytes with non-significant zeroes displayed as blank characters. The
value is updated following input of each new data record.

#RECNUM
A numeric field value equal to the sequence number of the last data record or DB2 table row read. For input data
sets, this value is the actual data set record number, not the input sequence number following record filtering.

The default length of the #RECNUM value is 9-bytes with non-significant zeroes displayed as blank characters.

#RECTYPE
A variable length character field containing the mixed case name of the record type mapping (record-type) used to
map the record or record segment currently being processed. The default length of the #RECTYPE built-in field is
30-bytes.

#SEQUENCE
A numeric field value equal to the output sequence number of the current report detail line being written.

The default length of the #SEQUENCE value is 9-bytes with non-significant zeroes displayed as blank characters.
The value is incremented prior to output of a report detail line.

#TIME
An 8-byte character field containing the civil, 12-hour clock time-of-day (hours and minutes) at which program
execution started. The hours value is either 1 or 2 characters in length, ranging from 1 to 12 and the minutes value
is 2 characters in length with a leading zero if necessary. The 2 values are separated by a colon (":") symbol. The
time-of-day value is followed by a blank character and eith "am" or "pm" to distinguish times in the morning
(midnight 12:00 am through 11:59 am) from times in the afternoon (noon 12:00 pm through 11:59 pm). The value
of this built-in field remains constant throughout the program execution.

Sample values:

Appendix A. Built-in Fields Built-in Field Descriptions

2024/09/02 11:04:59 FileKit REPORT Utility 210

 3:46 am
 10:07 pm

#TIME24
A 5-byte character field containing the time-of-day (hours and minutes) since midnight at which program execution
started. The hours and minutes values are each 2 characters in length with a leading zero if necessary and are
separated by a colon (":") symbol. The value of this built-in field remains constant throughout the program
execution.

Sample values:

 03:46
 15:01

#TIMESTMP
A 16-byte character field containing timestamp on which program execution started.

The #TIMESTMP value is comprised of the the date, as described for built-in field #TODAY, followed by a single
blank and the time of day, as described for built-in field #TIME24. The value of this built-in field will remain constant
throughout the program execution.

Built-in field #TIMESTMP is functionally equivalent to:

 #TODAY #TIME24

#TODAY
A 10-byte character field containing the date (year number, month-of-year number and day-of-month number) on
which program execution started. The 3 values are each 2 characters in length with a leading zero if necessary
and are separated by a slash ("/") symbol. The value of this built-in field will remain constant throughout the
program execution.

Built-in field #TODAY is functionally equivalent to:

 #YYYY 0 '/' 0 #MM 0 '/' 0 #DD

#YYYY
A 4-byte character field containing the year number (including the century) in which program execution started. The
value of this built-in field will remain constant throughout the program execution.

Appendix A. Built-in Fields Built-in Field Descriptions

2024/09/02 11:04:59 FileKit REPORT Utility 211

Appendix B. Built-in Functions

The COMPUTE section contains REXX program statements that are executed prior to output of a report detail line. The
purpose of the REXX routine is to update the values assigned to computed fields.

Because the routine is passed to the TSO/E REXX language processor, the computational expressions may include any
function supported by the TSO/E REXX language (see IBM publication "TSO/E REXX Reference"). Input fields, built-in
fields and computed fields may be used as arguments to REXX functions.

In addition to the standard TSO/E REXX functions, the REPORT utility supports a number of useful built-in REXX functions
that may be used in the report definition REXX routines.

The following table provides a brief description of each built-in function provided by the FileKit REPORT utility.

Built-in Funtion Description
ADDTIME Add 2 elapsed time values expressed as a number of hours, minutes and seconds.
BYPASS Skip reporting on the record or record segment currently being processed.
COUNTCHAR Return the number of occurrances of a specific character within a character string.
DATEINC Increment (or decrement) a date value by a number of days, months or years.
EOF Force end of input to skip reporting on the current record or record segment, and all records

that follow.
MONTHBEG Return the ISO format date for the first day in the month of the current or specified date.
MONTHEND Return the ISO format date for the last day in the month of the current or specified date.
SECS2TIME Convert a number of seconds value to a number of of hours, minutes and seconds.
TIME2SECS Convert a date, time or timestamp (date and time) value to a number of seconds.
TIMEINC Increment (or decrement) a time or timestamp (date & time) value by a number of hours,

minutes or seconds.

Built-in Function Descriptions

ADDTIME(time1,time2)

The elapsed time values time1 and time2 are added together to return a total elapsed time value.

An elapsed time value may be expressed as one of the following formats:

hours:minutes:seconds.fraction
hours:minutes:seconds

minutes:seconds.fraction
minutes:seconds

seconds.fraction
seconds

Where hours is a number of elapsed hours, minutes is a number of elapsed minutes, seconds is a number of
elapsed seconds and fraction is an elapsed fraction of a second expressed as a decimal. Each of these elapsed time
units is a positive integer value that may be specified with or without leading, non-significant zeroes. Furthermore,
the units may be non-normalised so that the value of seconds and minutes may be greater than 59.

The format of time1 does not have to match that of time2.

The returned elapsed time value will be normalised in the format:

hours:minutes:seconds.fraction

Where:
 hours will be a value 00 upwards.
 minutes will be a value 00 through 59.
 seconds will be a value 00 through 59.
 fraction will be a value containing a number of digits equal to the larger number of fractional digits specified by
time1 and time2. If no fractional digits have been specified for time1 and time2, then the returned elapsed time will
also have no decimal point (".") or fraction value. fraction value.

Examples:

Total = ADDTIME("22:15","1:48:08") /* Returns: "02:10:23" */
Total = ADDTIME("28:35:52.5","3600.23") /* Returns: "29:35:52.73" */
Total = ADDTIME("8:45.8","2.453") /* Returns: "00:08:48.253" */

2024/09/02 11:04:59 FileKit REPORT Utility 212

BYPASS()

BYPASS has no parameters and returns a value 0. It indicates to the REPORT utility that the record (or record
segment) currently being processed should be bypassed and not included in the report output.

Before the COMPUTE section REXX statements are executed, the REPORT utility will assign values from fields in the
current record/segment to REXX variables of the same name. The BYPASS function allows for the record or segment
to be bypassed based on its field values.

Example:

if TRACKLEN / 60 > 5 then rc=BYPASS() /* Bypass this record if track is longer than 5 minutes. */

COUNTCHAR(char,string[,ESC])

Counts the number of occurrences of the character, char, in the text string, string. The optional third argument, ESC,
indicates that char may be escaped so that two consecutive occurrences of char will be treated as a single
occurrence.

The function returns an integer value equal to the number of occurrences of char.

Examples:

NChar = COUNTCHAR("#","## Highlight ###") /* Returns: 5 */
NChar = COUNTCHAR("a","Have as many cakes as you want.") /* Returns: 6 */
NChar = COUNTCHAR("&","Jane && Jill && Jacqui.",ESC) /* Returns: 2 */

DATEINC([date][,[n][,[unit][,datefmt]]])

Adds n, a whole number of Days, Weeks, Months or Years, to a supplied ISO, US or UK/European format date
(date). The returned date value will be normalised with 4-byte year, 2-byte month and 2-byte day values arranged in
the same date format and using the same year, month, day separater character as the input date.

The DATEINC function input parameters are as follows:

The origin date (date) or "TODAY". (Default is "TODAY")1.
The increment value (n) which must be a positive or negative whole number. If negative, then n is
subtracted from the date. (Default is +1)

2.

The increment unit (unit) specified as "DAYS", "WEEKS", "MONTHS" or "YEARS". (Default is "DAYS")3.
The date format (datefmt) specified as "ISO", "UK" or "EUROPEAN" or "USA". (Default is "ISO")4.

Except for date format "UK", values for unit and datefmt have a minimum abbreviation of one character. For
example, date format "USA" may be specified as "US" or "U", and unit "WEEKS" may be specified as "WEEK",
"WEE", "WE" or "W".

A date value is expressed using a year number (year), month of year (month) and day of month (day) values. The
order of these values is based on the value of datefmt as follows:

 year, month, day for ISO format date (default).
 month, day, year for USA format date.
 day, month, year for UK or EUROPEAN format date.

Any single, non-numeric, non-blank character may be used to separate the year, month and day values.
Alternatively, date may be specified without separators, in which case it must comprise a 2 or 4-digit year, a 2-digit
month and 2-digit day number in the order dictated by the date format. For example, a US format date "04031981" is
recognised as 3rd April 1981.

If a 2-byte year is used, then a 100-year sliding window, ranging between -50 and +49 years from the current year, is
used to determine the 4-byte representation of year. For example, if the current year is "2020", a 2-byte year "70" will
be treated as "1970", but the 2-byte year "69" will be treated as "2069".

If date is omitted or specified as "TODAY" then the current date is used with slash ("/") year, month, day separator
character. The default format for date is ISO and, if not specified, the default increment is +1 day. Therefore,
DATEINC() with no parameters will return tomorrow's date in a 10-byte ISO format with a slash "/" separator between
the year, month and day values.

Examples:

NDate = DATEINC("2007/04/27",+630) /* Returns: 2009/01/16 */
NDate = DATEINC("04 - 27 - 07",+308,,"US") /* Returns: 02-29-2008 */
NDate = DATEINC("27#03#07",-1,"WEEK","UK") /* Returns: 20#03#2007 */
NDate = DATEINC("2007/04/27",,"year") /* Returns: 2008/04/27 */
NDate = DATEINC("2008/02/29",3,"y") /* Returns: 2011/03/01 */
NDate = DATEINC("2008/02/29",4,"y") /* Returns: 2012/02/29 */

Appendix B. Built-in Functions BYPASS()

2024/09/02 11:04:59 FileKit REPORT Utility 213

EOF()

EOF has no parameters and returns a value 0. It indicates to the REPORT utility that End-of-File (end of input object)
is to be flagged so that no further processing of input data occurs.

If end of input is triggered, the REPORT utility will start its end of report processing so that the current record (or
record segment) being processed and all subsequent records/segments are excluded from the report output.

Before the COMPUTE section REXX statements are executed, the REPORT utility will assign values from fields in
the current record/segment to REXX variables of the same name. The EOF function allows for early end of input
based on field values in the current record/segment.

Example:

 /* Records sorted in ascending order of ARTIST name. */
if left(ARTIST,1) > 'F' then rc=EOF() /* End of input processing for ARTIST name > 'F'. */

MONTHBEG([date][,datefmt])

Returns the date of the first day in the month for a supplied ISO, US or UK/European format date (date). The
returned date value will be normalised with 4-byte year, 2-byte month and 2-byte day values arranged in the same
date format and using the same year, month, day separater character as the input date.

The MONTHBEG function input parameters are as follows:

The origin date (date) or "TODAY". (Default is "TODAY")1.
The date format (datefmt) specified as "ISO", "UK" or "EUROPEAN" or "USA". (Default is "ISO")2.

Except for date format "UK", values for datefmt have a minimum abbreviation of one character. For example, date
format "USA" may be specified as "US" or "U".

A date value is expressed using a year number (year), month of year (month) and day of month (day) values. The
order of these values is based on the value of datefmt as follows:

 year, month, day for ISO format date (default).
 month, day, year for USA format date.
 day, month, year for UK or EUROPEAN format date.

Any single, non-numeric, non-blank character may be used to separate the year, month and day values.
Alternatively, date may be specified without separators, in which case it must comprise a 2 or 4-digit year, a 2-digit
month and 2-digit day number in the order dictated by the date format. For example, a US format date "04031981" is
recognised as 3rd April 1981.

If a 2-byte year is used, then a 100-year sliding window, ranging between -50 and +49 years from the current year, is
used to determine the 4-byte representation of year. For example, if the current year is "2020", a 2-byte year "70" will
be treated as "1970", but the 2-byte year "69" will be treated as "2069".

If date is omitted or specified as "TODAY" then the current date is used with slash ("/") year, month, day separator
character. The default format for date is ISO. Therefore, MONTHBEG() with no parameters will return the date of the
first day of the current month in a 10-byte ISO format with a slash "/" separator between the year, month and day
values.

Examples:

MDate = MONTHBEG("2012/02/27") /* Returns: 2012/02/01 */
MDate = MONTHBEG("12-4-18","US") /* Returns: 12-01-2018 */
MDate = MONTHBEG("120498","UK") /* Returns: 01041998 */
MDate = MONTHBEG(DATEINC("2007/04/27",+630)) /* Returns: 2009/01/01 */

Appendix B. Built-in Functions EOF()

2024/09/02 11:04:59 FileKit REPORT Utility 214

MONTHEND([date][,datefmt])

Returns the date of the last day in the month for a supplied ISO, US or UK/European format date (date). The
returned date value will be normalised with 4-byte year, 2-byte month and 2-byte day values arranged in the same
date format and using the same year, month, day separater character as the input date.

The MONTHEND function input parameters are as follows:

The origin date (date) or "TODAY". (Default is "TODAY")1.
The date format (datefmt) specified as "ISO", "UK" or "EUROPEAN" or "USA". (Default is "ISO")2.

Except for date format "UK", values for datefmt have a minimum abbreviation of one character. For example, date
format "USA" may be specified as "US" or "U".

A date value is expressed using a year number (year), month of year (month) and day of month (day) values. The
order of these values is based on the value of datefmt as follows:

 year, month, day for ISO format date (default).
 month, day, year for USA format date.
 day, month, year for UK or EUROPEAN format date.

Any single, non-numeric, non-blank character may be used to separate the year, month and day values.
Alternatively, date may be specified without separators, in which case it must comprise a 2 or 4-digit year, a 2-digit
month and 2-digit day number in the order dictated by the date format. For example, a US format date "04031981" is
recognised as 3rd April 1981.

If a 2-byte year is used, then a 100-year sliding window, ranging between -50 and +49 years from the current year, is
used to determine the 4-byte representation of year. For example, if the current year is "2020", a 2-byte year "70" will
be treated as "1970", but the 2-byte year "69" will be treated as "2069".

If date is omitted or specified as "TODAY" then the current date is used with slash ("/") year, month, day separator
character. The default format for date is ISO. Therefore, MONTHEND() with no parameters will return the date of the
last day of the current month in a 10-byte ISO format with a slash "/" separator between the year, month and day
values.

Examples:

MDate = MONTHEND("2012/02/27") /* Returns: 2012/02/29 */
MDate = MONTHEND("12-4-18","US") /* Returns: 12-31-2018 */
MDate = MONTHEND("120498","UK") /* Returns: 30041998 */
MDate = MONTHEND(DATEINC("2007/04/27",+630)) /* Returns: 2009/01/31 */

SECS2TIME(nsecs[,scale])

Converts a number of seconds to an elapsed time format. The number of seconds value, nsecs, may be expressed
as one of the following formats:

seconds.fraction
seconds

Where seconds is a number of seconds and fraction is a fraction of a second expressed as a decimal.

The optional second argument, scale, is an integer value indicating the number of significant fractional digits to
appear after the decimal point in the returned elapsed time value. If specified, then the fractional digit in the scale
position will be rounded up or down based on the value of the fractional digit in the position following.

The returned elapsed time value will be normalised in the format:

hours:minutes:seconds.fraction

Where:
 hours will be a value 00 upwards.
 minutes will be a value 00 through 59.
 seconds will be a value 00 through 59.
 fraction will be a value containing a number of digits equal to the scale value or otherwise the number of fractional
digits specified by the nsecs value. If no scale is specified and no fractional digits have been specified for nsecs then
the returned elapsed time will also have no decimal point (".") or fraction value.

Examples:

ETime = SECS2TIME("64354.23") /* Returns: 17:52:34.23 */
ETime = SECS2TIME("76475.3758",3) /* Returns: 21:14:35.376 */

Appendix B. Built-in Functions MONTHEND([date][,datefmt])

2024/09/02 11:04:59 FileKit REPORT Utility 215

TIME2SECS(source[,[scale][,datefmt]])

Converts a source value to a number of seconds with or without a fraction of a second value with scale number of
decimal places.

The TIME2SECS function input parameters are as follows:

The source value specified as either a calendar date (date), an elapsed time (etime) or both (etimestamp).1.

A whole number of decimal places (scale) representing a fraction of a second. The least significant
fractional digit in the scale position will be rounded up or down based on the value of the fractional digit in
the position following. If scale is 0 (zero), then the returned number of seconds will be an integer value with
no decimal point (".") or fraction value. Default is the number of fractional digits specified by the etime or
etimestamp value, otherwise 0 (zero).

2.

Applicable to date and etimestamp source values only, the date format (datefmt) specified as "ISO", "UK" or
"EUROPEAN" or "USA". Except for "UK", datefmt values have a minimum abbreviation of one character.
For example, date format "USA" may be specified as "US" or "U". (Default is "ISO")

3.

The format of source value is as follows:

date By definition, a calendar date value is the number of days elapsed since "0001/01/01" expressed
using a year number (year), month of year (month) and day of month (day) values. The order of
these values is based on the value of datefmt as follows:

 year, month, day for ISO format date (default).
 month, day, year for USA format date.
 day, month, year for UK or EUROPEAN format date.

Any single non-numeric, non-blank character may be used to separate the year, month and day
values. Alternatively, date may be specified without separators, in which case it must comprise a 2
or 4-digit year, a 2-digit month and 2-digit day number in the order dictated by the date format. For
example, a UK format date "03062021" is recognised as 3rd June 2021.

If a 2-byte year is used, then a 100-year sliding window, ranging between -50 and +49 years from
the current year, is used to determine the 4-byte representation of year. For example, if the
current year is "2020", a 2-byte year "70" will be treated as "1970", but the 2-byte year "69" will be
treated as "2069".

etime An etime value is an elapsed number seconds expressed in hours, minutes, seconds and/or
fractions of a second as follows:

 hours:minutes:seconds.fraction
 hours:minutes:seconds

 minutes:seconds.fraction
 minutes:seconds

 seconds.fraction
 seconds

Where:
 hours is a number of elapsed hours.
 minutes is a number of elapsed minutes.
 seconds is a number of elapsed seconds.
 fraction is an elapsed fraction of a second expressed as a decimal.

A colon (":") symbol must be used to separate hours, minutes and seconds values, and a
dot/period (".") used as the decimal point symbol before the fraction value.

Each of these elapsed time units is a positive integer value that may be specified with or without
leading, non-significant zeroes. Furthermore, an etime value is not bound by the usual limits of a
time-of-day value. i.e. The value for hours may be greater than 23, and the value for seconds and
minutes may each be greater than 59.

etimestamp An etimestamp value may be expressed as one of the following formats:

 date etime

Where:
 date is an elapsed date value as described for date above.
 etime is an elapsed time value as described for etime above.

Examples:

NSecs = TIME2SECS("1:53:08") /* Returns: 6788 */
NSecs = TIME2SECS("123:32:16") /* Returns: 444736 */
NSecs = TIME2SECS("88:42.39742",2) /* Returns: 5322.40 */
NSecs = TIME2SECS("2020/01/13 13:22:05.165",1) /* Returns: 63714518525.2 */

Appendix B. Built-in Functions TIME2SECS(source[,[scale][,datefmt]])

2024/09/02 11:04:59 FileKit REPORT Utility 216

TIME2SECS may be used to calculate the difference (number of seconds elapsed) between two two date, timestamp
or elapsed time values. The SECS2TIME function may then be used to convert this value back to an elapsed time
value.

Duration = SECS2TIME(TIME2SECS("2020/01/13 13:22:05") - TIME2SECS("2020/01/12 21:44:34"))
 /* Duration value is: 15:37:31 */

Appendix B. Built-in Functions TIME2SECS(source[,[scale][,datefmt]])

2024/09/02 11:04:59 FileKit REPORT Utility 217

TIMEINC([origin][,[n][,[unit][,datefmt]]])

Adds n, a whole number of Seconds, Minutes or Hours, to a supplied origin date and/or time. The returned date
and/or time value will be normalised. A returned date will comprise 4-byte year, 2-byte month and 2-byte day values
arranged in the same date format and using the same year, month, day separater character Similarly, a returned
time value will comprise 2-byte hour, minutes and seconds values using the same hour, minutes, seconds separator
as the origin time. A fraction of seconds value will also be included if one exists in the origin time.

The TIMEINC function input parameters are as follows:

The original date and/or time value (origin) or "NOW". (Default is "NOW")1.
The increment value (n) which must be a positive or negative whole number. If negative, then n is
subtracted from origin. (Default is +1)

2.

The increment unit (unit) specified as "SECONDS", "MINUTES" or "HOURS". (Default is "SECONDS")3.
Applicable only to origin values containing a date, the date format (datefmt) specified as "ISO", "UK" or
"EUROPEAN" or "USA".

4.

Except for date format "UK", values for unit and datefmt have a minimum abbreviation of one character. For
example, date format "USA" may be specified as "US" or "U", and unit "HOURS" may be specified as "HOUR",
"HOU", "HO" or "H".

The origin value is specified as either a calendar date (date), a time-of-day (time) or both (timestamp) as follows:

date A date value is expressed using a year number (year), month of year (month) and day of month
(day) values. The order of these values is based on the value of datefmt as follows:

 year, month, day for ISO format date (default).
 month, day, year for USA format date.
 day, month, year for UK or EUROPEAN format date.

Any single, non-numeric, non-blank character may be used to separate the year, month and day
values. Alternatively, date may be specified without separators, in which case it must comprise a 2
or 4-digit year, a 2-digit month and 2-digit day number in the order dictated by the date format. For
example, a UK format date "03062021" is recognised as 3rd June 2021.

If a 2-byte year is used, then a 100-year sliding window, ranging between -50 and +49 years from
the current year, is used to determine the 4-byte representation of year. For example, if the
current year is "2020", a 2-byte year "70" will be treated as "1970", but the 2-byte year "69" will be
treated as "2069".

When date is specified, the default time value is "00:00:00".
time The time of day value (time) may be expressed as one of the following formats:

 hh:mm:ss.fraction
 hh:mm:ss
 hh:mm

 mm:ss.fraction

Where:
 hh is a valid hour-of-day (24-hour clock) value in the range 0-23 (default 0).
 mm is a valid minute-of-hour value in the range 0-59.
 ss is a valid second-of-minute value in the range 0-59 (default 0).
 fraction is a fraction of a second expressed as a decimal.

Any single, non-numeric, non-blank character may be used to separate hh, mm and ss values,
and a different non-numeric, non-blank character may be used as the decimal point before the
fraction value. For example, "21:05:15.035", "21-05-15/035" and "21.05.15,035" are all valid and
represent the same time of day value.

Each of these time units is a positive integer value that may be specified with or without leading,
non-significant zeroes. For example, "3:24" is equivalent to "03:24:00" and "7:1.0" is equivalent to
"00:07:01.0".

When time alone is specified, then the incremented value may be earlier than the original time if it
wraps over a midnight boundary (i.e. a value greater than "23:59:59.999999"). For example,
"22:15:00" incremented by 4 hours would return a value "02:15:00".

timestamp A timestamp value is expressed as a date and time:

 date time

Where:
 date is a date value as described for date above.
 time is a time value as described for time above.

If date or time is specified, then the REPORT utility will verify the entry as being either a valid date or time. If the
entry is a valid time value and a valid date value, then it will be treated as a time value unless slash ("/") is used as
the only separator character, in which case it will be treated as a date value. For example, "20-05-11" will be treated

Appendix B. Built-in Functions TIMEINC([origin][,[n][,[unit][,datefmt]]])

2024/09/02 11:04:59 FileKit REPORT Utility 218

as a time value, but "20/05/11" will be treated as a date value.

If date, time or timestamp is omitted or specified as "NOW", then the current ISO date and time is used with slash
("/") year, month, day separator character, colon (":") hours, minutes, seconds separator and a dot/period (".")
decimal point before the fraction of second value. The default datefmt is ISO and, if not specified, the default
increment is +1 second. Therefore, TIMEINC() with no parameters will return the ISO date and time 1 second on
from the current date and time.

Examples:

TS=TIMEINC("2007/04/27 10:33:21.222",+12,"s","iso") /* Returns: 2007/04/27 10:33:33.222 */
TS=TIMEINC("3-16-2021 9.22.18",+2000,"MIN","US") /* Returns: 03-17-2021 18.42.18 */
TS=TIMEINC("2021/09/28",+60*60*24*3) /* Returns: 2021/10/01 00:00:00 */
TS=TIMEINC("10.58.59,222",-18,"HOURS") /* Returns: 16.58.59,222 */

Appendix B. Built-in Functions TIMEINC([origin][,[n][,[unit][,datefmt]]])

2024/09/02 11:04:59 FileKit REPORT Utility 219

Appendix C. Sample Data

The following details the sample data and associated structures used in examples in this manual.

Formula 1 Drivers
Structure: COBOL Copy Book ZZS.ZZSSAM1(ZZSCF1DR)

 01 F1-Driver.
 05 NUMBER PIC 99 COMP-4.
 05 NAME PIC X(20).
 05 COUNTRY PIC X(20).
 05 BIRTH-PLACE PIC X(20).
 05 DATE-OF-BIRTH PIC 9999/99/99.
 05 FIRST-RACE PIC 9999/99/99.
 05 FIRST-RACE-CIRCUIT PIC X(3).

Formula 1 2019 Race Venues (Circuits)
Structure: FileKit SDO Structure ZZS.ZZSDIST.SDO(ZZSSF1VE)

This structure is created using the following FileKit primary command:

 <sdata create structure ZZS.ZZSDIST.SDO(ZZSSF1VE) \
 (\
 F1-Venue structure \
 (\
 CODE character(3) \
 ,COUNTRY character(10) \
 ,TRACK character(30) \
 ,TYPE character(10) \
 ,LAPS integer(2) unsigned \
 ,LAP-LENGTH-KM fixed(4,3) unsigned \
 ,TOTAL-DISTANCE-KM fixed(6,3) unsigned \
 ,TURNS integer(2) unsigned \
 ,RACE-LAP-RECORD time(stck,22) \
 ,RACE-LAP-RECORD-DATE date(dec) \
 ,RACE-LAP-RECORD-HOLDER character(20) \
 ,RACE-LAP-RECORD-TEAM character(10) \
) \
) names(cobol)

Formula 1 2019 Race Events
Structure: FileKit SDO Structure ZZS.ZZSDIST.SDO(ZZSSF1EV)

This structure is created using the following FileKit primary command:

 <sdata create structure ZZS.ZZSDIST.SDO(ZZSSF1EV) \
 (\
 F1-2019-Event structure \
 (\
 EVENTID character(7) \
 ,VENUE character(3) \
 ,EVENT-DATE date(dec) \
 ,LOCAL-TIME time(dec) \
 ,UTC-OFFSET integer(2) signed \
 ,TRACK-CONDITION character(3) \
 ,TRACK-TEMPERATURE-CELCIUS integer(2) signed \
 ,HUMIDITY-PERCENTAGE integer(2) unsigned \
) \
) names(cobol)

2024/09/02 11:04:59 FileKit REPORT Utility 220

Formula 1 2019 Results
Structure: FileKit SDO Structure ZZS.ZZSDIST.SDO(ZZSSF1RE)

This structure is created using the following FileKit primary command:

 <sdata create structure ZZS.ZZSDIST.SDO(ZZSSF1RE) \
 (\
 F1-2019-Result structure \
 (\
 EVENT character(7) \
 ,TRACK character(3) \
 ,POSITION integer(2) \
 ,DRIVER-NUMBER integer(2) \
 ,DRIVER character(20) \
 ,DRIVER-NATIONALITY character(20) \
 ,DRIVER-TEAM character(20) \
 ,FINISH-TIME time(stck,22) \
 ,LAPS-COMPLETED integer(2) unsigned \
 ,GRID-POSITION integer(2) unsigned \
 ,POINTS integer(2) unsigned \
 ,NOTES character(20) \
) \
) names(cobol)

ALBUM Tracks
Structure: COBOL Copy Book ZZS.ZZSSAM1(ZZST1CPC)

 01 TRACK .
 05 PERSISTENT-ID PIC X(016).
 05 TRACK-NUM PIC 9(003).
 05 TRACK-ID PIC 9(004).
 05 NAME PIC X(120).
 05 ARTIST PIC X(070).
 05 ALBUM PIC X(070).
 05 TOTAL-TIME PIC 9(007) BINARY.
 05 FILE-SIZE PIC 9(009) BINARY.
 05 BIT-RATE PIC 9(004) BINARY.
 05 SAMPLE-RATE PIC 9(005) PACKED-DECIMAL.
 05 YEAR PIC 9(004).
 05 NORMALIZATION PIC S9(005) PACKED-DECIMAL.
 05 DISC-NUMBER PIC 9(003).
 05 ALBUM-ARTIST PIC X(041).
 05 RELEASE-DATE PIC X(020).
 05 DATE-ADDED PIC X(020).
 05 DATE-MODIFIED PIC X(020).

Appendix C. Sample Data Formula 1 2019 Race Events

2024/09/02 11:04:59 FileKit REPORT Utility 221

Appendix D. REPORT Logic Flow

The following logic flow diagrams illustrate REPORT processing stages for the three different types of data input (SDE, SMF
and DB2).

SDE Dataset Processing

 +----------------+
 | Start of Job |
 +----------------+
 |
 +--+--+-------------------------------->+
 | ^ ^ |
 | | | v
 | | | +----------------------------+
 | | | | Get a data file record. |
 | | | +----------------------------+
 | | | |
 | | | v
 | | | +----------------------------+
 | | | | End-of-Input data or |
 | | | | Input record count |----------------------+
			> Input Limit?	Yes
		+----------------------------+		
			No	
		v		
		+----------------------------+		
			FILTER Clause or	v
		+-----	FIND String filtering	+----------------------------+
			Yes	specified?
			+----------------------------+ +----------------------------+ No	
				No
		v	v	
		+------------------------+	+----------------------------+	
	+---	FILTER or FIND String		
	No	filtering satisfied?		+----------------------------+
	+------------------------+			
		Yes		
			+----------------->+	
	+------------------>+			
			v	
	v	+----------------------------+		
	+----------------------------+		Read a SORTOUT record	
	+-----	SORT required?		+----------------------------+
		Yes +----------------------------+		
	v	No	v	
	+----------------------------+		+----------------------------+ Yes	
		Write SORTIN detail line.		
	+----------------------------+		+----------------------------+	
+----------------+ v	v			
+----------------------------+	+----------------------------+			
	Write output detail line.			Write output detail line.
+----------------------------+	+----------------------------+			
v	v			
+----------------------------+	+----------------------------+			
 +-------------------------| Output detail line count | +---| Output detail line count | | |
 No | = Output Limit? | No | = Output Limit? | | |
 +----------------------------+ +----------------------------+ | |
 | Yes | Yes | |
 | v v |
 +<------------------------------------+------------------+---+
 |
 v
 +----------------+
 | End of Job |
 +----------------+

2024/09/02 11:04:59 FileKit REPORT Utility 222

SMF Records Dataset Processing

 +----------------+
 | Start of Job |
 +----------------+
 |
 +--+--+--+----------------------------->+
 | ^ ^ ^ |
 | | | | v
 | | | | +----------------------------+
 | | | | Get a data file record. |
 | | | | +----------------------------+
 | | | | |
 | | | | v
 | | | | +----------------------------+
 | | | | | End-of-Input data or |
 | | | | | Input record count |----------------------+
				> Input Limit?	Yes
			+----------------------------+		
				No	
			v		
			+----------------------------+ Yes		
				High DATE specified?	-----+
			+----------------------------+		
			No	v	
				+--------------------------+	
					SMF record date/time
					> specified High DATE?
				+--------------------------+	
					No
			+<-------------------+		
			v		
			Yes +----------------------------+		
			+-----	Low DATE specified?	
				+----------------------------+	
			v	No	
			+-----------------------+		
		+---	SMF record date/time		
		Yes	< specified Low DATE?		
		+-----------------------+			
		No			
		+------------------>+			
		v			
		+----------------------------+			
			FILTER Clause or		
		+-----	Content Match Criteria		
			Yes	specified?	v
			+----------------------------+ +----------------------------+		
				No	SORT required?
		v	+----------------------------+ No		
		+-------------------------+		Yes	
			FILTER Clause or		v
	+---	Content Match Criteria		+----------------------------+	
	No	satisfied?			Invoke SORT Utility
	+-------------------------+	+----------------------------+			
		Yes			
			+----------------->+		
	+------------------>+				
			v		
	v	+----------------------------+			
	+----------------------------+		Read SORTOUT record		
	+-----	SORT required?		+----------------------------+	
		Yes +----------------------------+			
	v	No	v		
	+----------------------------+		+----------------------------+ Yes		
		Write SORTIN detail line.			
	+----------------------------+		+----------------------------+		
					No
+----------------+ v	v				
+----------------------------+	+----------------------------+				
	Write report detail line.			Write report detail line.	
+----------------------------+	+----------------------------+				
v	v				
+----------------------------+	+----------------------------+				
 +-------------------------| Output detail line count | +---| Output detail line count | | |
 No | = Output Limit? | No | = Output Limit? | | |
 +----------------------------+ +----------------------------+ | |
 | Yes | Yes | |
 | v v |
 +<------------------------------------+------------------+---+
 |
 v
 +----------------+
 | End of Job |
 +----------------+

Appendix D. REPORT Logic Flow SDE Dataset Processing

2024/09/02 11:04:59 FileKit REPORT Utility 223

Content match criteria:

 +------------+ +------------+
 | LOGIC(OR) | | LOGIC(AND) |
 +------------+ +------------+
 | |
 v v
 +----------------------------+ +----------------------------+
 | TYPES specified? |-----+ +----------| TYPES specified? |
 +----------------------------+ No | | No +----------------------------+
 | Yes | | | Yes
 v | | v
 +--------------------------------+ | | +--------------------------------+
 +--------| SMF record match on one of | | | | SMF record match on one of |----------+
Yes	the specified TYPE values?				the specified TYPE values?	No
+--------------------------------+		+--------------------------------+				
	No			Yes		
+<------------------+ +------------------------>+						
v v						
+----------------------------+ +----------------------------+						
	System ID (SID) specified?	-----+ +----------	System ID (SID) specified?			
+----------------------------+ No		No +----------------------------+				
	Yes			Yes		
v		v				
+--------------------------------+		+--------------------------------+				
+<-------	SMF record match on one of				SMF record match on one of	--------->+
Yes	the specified SID values?				the specified SID values?	No
+--------------------------------+		+--------------------------------+				
	No			Yes		
+<------------------+ +------------------------>+						
v v						
+----------------------------+ +----------------------------+						
	USERID specified	+----------	USERID specified?			
	and	-----+	No +----------------------------+			
	SMF record type has a	No			Yes	
	USERID field?			v		
+----------------------------+		+--------------------------------+				
	Yes			SMF record type has a		
v			USERID field			
+--------------------------------+			and	--------->+		
+<-------	SMF record match on one of				SMF record matches one of	No
Yes	the specified USERID masks?				the specified USERID masks?	
+--------------------------------+		+--------------------------------+				
	No			Yes		
+<------------------+ +------------------------>+						
v v						
+----------------------------+ +----------------------------+						
	JOBNAME specified	+----------	JOBNAME specified?			
	and	-----+	No +----------------------------+			
	SMF record has a	No			Yes	
	JOBNAME field?			v		
+----------------------------+		+--------------------------------+				
	Yes			SMF record type has a		
v			JOBNAME field			
+--------------------------------+			and	--------->+		
+<-------	SMF record match on one of				SMF record matches one of	No
Yes	the specified JOBNAME masks?				the specified JOBNAME masks?	
+--------------------------------+		+--------------------------------+				
	No			Yes		
+<------------------+ +------------------------>+						
v v						
+----------------------------+ +----------------------------+						
+<---------	FIND specified?	+----------	FIND specified?			
No +----------------------------+	No +----------------------------+					
	Yes		Yes			
v	v					
+--------------------------------+	+--------------------------------+					
+<-------	SMF record match on one of			SMF record match on one of	--------->+	
Yes	the specified FIND strings?			the specified FIND strings?	No	
+--------------------------------+	+--------------------------------+					
	No		Yes			
 +------+ | +------------------------>+ +------+
 | | | |
 v v v v
+------------------+ +-----------------+ +------------------+ +-----------------+
| True Condition | | False Condition | | True Condition | | False Condition |
+------------------+ +-----------------+ +------------------+ +-----------------+

Appendix D. REPORT Logic Flow SMF Records Dataset Processing

2024/09/02 11:04:59 FileKit REPORT Utility 224

DB2 Result Table Processing

 +----------------+
 | Start of Job |
 +----------------+
 v
 +------------------------------+
 | DB2 Result Table Definition |-----------------------------+
 | supplied as SQL Query? | Yes |
 +------------------------------+ |
 v No |
 +------------------------------+ |
 | WHERE clause specified? |---------+ |
 +------------------------------+ Yes | |
 v No | |
 +------------------------------+ | |
 +--------| FILTER clause specified? | | |
 v Yes +------------------------------+ v |
 +----------------------+ | No +----------------------+ |
 | Use FILTER clause as |--------------->+<----------------| Use WHERE clause | |
 | WHERE clause | | +----------------------+ |
 +----------------------+ v |
 +--+ |
 | Build Dynamic SQL Query using | |
 | table/view name, WHERE clause, | |
 | and ORDER BY clause. | |
 +--+ |
 | |
 +<--+
 v
 +------------------------------+
 | Input Limit specified? |---------------------+
 +------------------------------+ Yes v
 | No +-----------------------------+
 | | Add FETCH FIRST clause to |
 | | the supplied or dynamically |
 | | generated SQL Query. |
 | +-----------------------------+
 | |
 +<------------------------------------+
 v
 +------------------------------+
 | Generate DB2 Result Table |
 | using SQL Query |
 +------------------------------+
 |
 +--+--+-------------------------------->+
 | ^ ^ v
 | | | +----------------------------+
 | | | | Get a DB2 Table Row. |
 | | | +----------------------------+
 | | | v
 | | | +----------------------------+
 | | | +-----| FROM row number specified? | +--------------------+
 | | | | Yes +----------------------------+ | |
 | | | v | No | |
 | | | +------------------------+ | | v
 | | +---| Input row number | | | +----------------------------+
 | | No | >= FROM row number? | | | | SORT required? |-------+
	+------------------------+		+----------------------------+ No				
		Yes			Yes		
	+------------------>+	+----------------------------+					
	v		Invoke SORT Utility				
	+----------------------------+	+----------------------------+					
		End-of-Input data ?	--+				
	+----------------------------+ Yes +---------------->+						
	v No	v					
	+----------------------------+	+----------------------------+					
	+-----	SORT required?			Read a SORTOUT record		
		Yes +----------------------------+	+----------------------------+				
	v	No	v				
	+----------------------------+		+----------------------------+ Yes				
		Write SORTIN detail line.				End-of-SORTOUT data?	----+
	+----------------------------+ v	+----------------------------+					
		+----------------------------+	v No				
+----------------+	Write output detail line.		+----------------------------+				
+----------------------------+		Write output detail line.					
		+----------------------------+					
v	v						
+----------------------------+	+----------------------------+						
 +-------------------------| Output detail line count | +--| Output detail line count | | |
 No | = Output Limit? | No | = Output Limit? | | |
 +----------------------------+ +----------------------------+ | |
 | Yes v Yes v |
 +<-------------------------------------+------------------+--+
 v
 +----------------+
 | End of Job |
 +----------------+

Appendix D. REPORT Logic Flow DB2 Result Table Processing

2024/09/02 11:04:59 FileKit REPORT Utility 225

	Contents
	Documentation Notes
	Introduction
	About this Book
	Report Utility Overview
	Notation Conventions
	Summary of Changes
	Release 3.60 Enhancements

	Basic Reporting
	Select Report Columns
	The COLUMNS: Section
	Examples
	Select Report Columns - Example 1.
	Select Report Columns - Example 2.

	Change Column Display
	Column Data
	Column Constants and Gaps
	Column Headings
	Examples
	Change Column Data Display - Example 1.
	Change Column Data Display - Example 2.

	Create New Fields
	The COMPUTE: Section
	Examples
	Create New Fields - Example 1.
	Create New Fields - Example 2.

	Change Page Display
	The HEAD: and FOOT: Sections
	Variable Substitution
	Text Fragment Width, Alignment & Gaps
	Examples
	Change Page Display - Example 1.
	Change Page Display - Example 2.

	Filter Input Records
	The FILTER: Section
	Examples
	Filter Input Records - Example 1.

	Order Report Output
	The SORT: Section
	Examples
	Order Report Output - Example 1.
	Order Report Output - Example 2.
	Order Report Output - Example 3.

	Insert Breaks
	The BREAK: Section
	BREAK Line Text
	The STATISTICS: Section
	Examples
	Insert Breaks - Example 1.
	Insert Breaks - Example 2.
	Insert Breaks - Example 3.

	Summary Reports
	Examples
	Summary Report - Example 1.
	Summary Report - Example 2.
	Summary Report - Example 3.

	CSV Output
	Examples
	CSV Report - Example 1.
	CSV Report - Example 2.

	JSON Output
	Examples
	JSON Report - Example 1.
	JSON Report - Example 2.
	JSON Report - Example 3.
	JSON Report - Example 4.

	XML Output
	Examples
	XML Report - Example 1.
	XML Report - Example 2.
	XML Report - Example 3.

	BROWSE Output
	Examples
	BROWSE Output - Example 1.
	BROWSE Output - Example 2.

	REPORT Execution
	Record Input
	Record Filtering
	Record Filtering for SDE Record Input
	Record Filtering for SMF Record Input
	Record Filtering for DB2 Table Input
	Search Values
	Wildcard Symbols

	SMF Type Values
	Timestamp Values

	Statistical Values
	Statistics Types
	Statistics Example
	Break Lines
	Column Statistics
	Column Value State
	Statistics Value Abbreviation

	Report Panels
	Formatted Record Report
	DB2 Report
	DB2 Report - Table/View
	DB2 Table Selection
	DB2 WHERE Clause - Select Table Rows by Column Value
	DB2 ORDER BY Clause
	DB2 Report - SQL Query Control File
	DB2 Report - SQL Query Statement
	DB2 SQL Expanded View
	DB2 Result Table View
	SMF Report

	Command Line Interface
	Command File Execution
	Batch Execution
	JCL DD Statements

	REPORT Command

	REPORT Definition
	Syntax Rules
	Statement Continuation
	Statement Separation
	Comments
	Character String Literals

	Page Width
	Record Types
	FileKit SDO Structure
	Record Type Assignment
	Record Type Specification

	Fields
	Input Record Fields
	Input Record Field Specification
	Unqualified
	Fully Qualified

	Computed Fields
	Computed Field Specification
	Built-in Fields
	Built-in Field Specification

	Print Expressions
	Report Definition Sections
	BLANKWHENZERO
	BREAK
	BROWSE-EXIT
	COLUMNS
	COMPUTE
	DISPLAY-EXIT
	FILTER
	FOOT
	HEAD
	INIT-EXIT
	INPUT
	MAP
	OPTIONS
	OUTPUT
	REPEAT
	REQUIRED
	RESET
	SORT
	STATISTICS
	TRANSLATE

	Appendix A. Built-in Fields
	Built-in Field Descriptions

	Appendix B. Built-in Functions
	Built-in Function Descriptions
	ADDTIME(time1,time2)
	BYPASS()
	COUNTCHAR(char,string[,ESC])
	DATEINC([date][,[n][,[unit][,datefmt]]])
	EOF()
	MONTHBEG([date][,datefmt])
	MONTHEND([date][,datefmt])
	SECS2TIME(nsecs[,scale])
	TIME2SECS(source[,[scale][,datefmt]])
	TIMEINC([origin][,[n][,[unit][,datefmt]]])

	Appendix C. Sample Data
	Formula 1 Drivers
	Formula 1 2019 Race Venues (Circuits)
	Formula 1 2019 Race Events
	Formula 1 2019 Results
	ALBUM Tracks

	Appendix D. REPORT Logic Flow
	SDE Dataset Processing
	SMF Records Dataset Processing
	DB2 Result Table Processing

